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1. Introduction 
 

In a subscription business model, an adverse effect for any subscription company is the depar-

ture of a customer. Thus, the development of metrics to analyze this phenomenon has received 

massive attention from companies. In this context, the concept of the customer churn rate is 

relevant to be discussed and analyzed. According to Hwang et al. (2004), the churn rate de-

scribes the percentage of subscribers who abandon a relationship with a service provider after 

a given time. It is computed as 

 

𝐶𝑟 =  
𝑛𝑐𝑡

𝑁𝑡
                                      (1) 

 

where Cr is the churn rate, nct is the number of churned customers in period t, and Nt is the total 

number of subscribers at the beginning of period t. 

Customer churn can be split into two main groups, voluntary and non-voluntary (Hadden et al., 

2007). When the customer is withdrawn by the company for reasons such as abuse of service, 

lack of payments, fraud, or similar, we have non-voluntary churn. On the other hand, if the 
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  Abstract 
 

The Beta Distribution model has been applied in many different research 

environments due to the flexibility of its two parameters. In this re-

search, I fit this probabilistic model for modeling a recurring problem 

confronted by many businesses called the Customer Churn Rate. It rep-

resents the proportion of customers who cancel their subscriptions after 

a given time. I use data from a Brazilian media service company to de-

velop the modeling. The parameters are estimated by the maximum like-

lihood estimation (MLE) technique. Finally, I perform the MLE tech-

nique by considering two programming languages: Ox and R. 
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customer decides to terminate their relationship with the service provider, we have voluntary 

churn. This one also divides into two types, incidental churn, and deliberative churn. Incidental 

churn refers to churn due to changes in circumstances that prevent the customer from continu-

ing as a customer. Deliberative churn is when the consumer changes their service provider, 

choosing a competing company (Axelsson and Nostam, 2017). Figure 1 systematizes types of 

customer churn. 

 

 
Figure 1. Types of Customer Churn. 

 

Research into the churn rate has been developed under many different techniques. Decision 

trees, support vector machines, random forests, artificial neural networks, Markov chains, na-

ive Bayes, and logistic regression were applied in the prediction of customer churning or cus-

tomer classification (Hoppner et al., 2020; Yeon and Sehun, 2005; Burez and Van den Poel, 

2007; Vafeiadis et al., 2015). However, it does not exist studies focused on the fit of the churn 

rate distribution. This study fills this gap through the utilization of the beta distribution model. 

Generally speaking, the beta distribution is a continuous probability distribution having two 

parameters. It applies to the modeling of random phenomena whose set of possible values is 

bounded into the interval (0, 1), such as percentages and proportions. Within this framework, 

the churn rate whose domain belongs to this interval can be modeled by the beta distribution. 

In this paper, I use the maximum likelihood estimation (MLE) technique (Casella and Berger, 

2002) for estimating the parameters by using customer churn rate data collected from a Brazil-

ian media service company. Moreover, I provide standard errors and confidence intervals for 

each parameter. The implementation of the MLE technique is developed in two programming 

languages, Ox and R. Thus, the computational procedures for each programming language are 

discussed and compared. 

The rest of this paper is organized as follows. The next section presents the features of the beta 

distribution model and some applications in different research environments. Section 3 de-

scribes the maximum likelihood estimation technique for the beta distribution model. Section 

4 presents the data set, the results generated from the MLE for each programming language, 

and the computational implementation. Finally, I conclude the study and show some further 

extensions in section 5. 
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2. Beta Distribution Model 
 

A random variable x is said to have a beta distribution if its density is given by: 

 

𝑓(𝑥) =  {
1

𝛽(𝑎,𝑏)
𝑥𝑎−1(1 − 𝑥)𝑏−1 if 𝑥 ∈ (0,1)

0                                           otherwise
                    (2) 

 

𝛽(𝑎, 𝑏) =  
Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
, 

 

where the beta function is denoted β(a, b) and Γ(.) is the gamma function. The shape parameters 

of the distribution are a(>0) and b(>0) (Krishnamoorthy, 2016). 

The density of the beta distribution may have different shapes since its parameters can take a 

wide range of values, as shown in Figure 2. This distribution is:  

(i) uniform if a = b = 1,  

(ii) U-shape for a < 1 and b < 1 

(iii) symmetrical for a = b 

(iv) J-shape for a > 1 and b < 1 

(v) reverse J-shape for a < 1 and b > 1 

(vi) mount shape if a > 1 and b > 1 

 

 
 

Figure 2. Probability Density Function of β(a, b). 

 

The expected value and variance are defined, respectively: 

 

𝔼[𝑋] =  
𝑎

𝑎+𝑏
                               (3) 

 

var[𝑋] =  
𝑎𝑏

(𝑎+𝑏)2(𝑎+𝑏+1)
                           (4) 

 

Detailed information, special cases, generating pseudo-random numbers, and distributions de- 

rived from the beta distribution can be seen in Gupta and Nadarajah (2004) and Hung et al. 

(2009). 
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2.1. Review of previous works 
 

Several works have employed the beta distribution to model many different types of phenom-

ena whose random variable assumes values over the interval (0,1). Ferrari and Cribari-Neto 

(2004) developed a regression model when the dependent variable follows the beta distribution 

model. In finance, this distribution has been applied to measure the probability of payment or 

default in the credit granting decision (Bierman-Jr and Hausman, 1970). In management, the 

expected value of the four-parameter beta distribution is used to specify the project duration by 

considering three possible scenarios related to concluding of activities (Hajdu and Bokor, 2014; 

Golenko-Ginzburg, 1988; Malcolm et al., 1959). 

Oguamanam et al. (1995) utilized the kurtosis of the beta distribution to predict the gear teeth 

condition. Lallemant and Kiremidjian (2015) applied the beta distribution for modeling the 

conditional probability of damage given ground-motion intensity using data from the Haiti 

2010 earthquake. Other research applications for this probability model were directed in the 

meteorology field (Chia and Hutchinson, 1991; Sulaiman et al., 1999) and hydrological analy-

sis (Bhunya et al., 2004; Jung et al., 2019; Seo and Baek, 2004). Finally, an application of the 

beta distribution for survival analysis was proposed by Fader and Hardie (2007). These authors 

fitted the shifted-beta-geometric distribution to provide a survivor function related to customer 

retention. 

 

3. Parameter Estimation 
 

The method applied to estimate the parameters is the maximum likelihood estimation. As seen 

in Owen (2008), this provides good performance and is commonly used for fitting the two-

parameter beta distribution. 

The basic idea of the MLE technique is on assuming a statistical model parametrized by a fixed 

and unknown θ (parameter or vector of parameters) and Θ (parameter space), the likelihood 

L(θ) is the probability of the observed data x considered as a function of θ (Pawitan, 2001). 

This method captures all the information in the data yielding a point estimate for θ. The prop-

erties of its estimator (𝜃) are summarized as follows: 

• 𝜃 is an asymptotically unbiased estimator of θ; 

• 𝜃 is consistent for θ; 

• 𝜃 is the asymptotically efficient estimator of θ; 

• When the sample size is large, 𝜃  
𝑑
→  𝑁(𝜃, 𝐾−1(𝜃)). 𝐾(𝜃) is the Fisher information 

matrix. 

The relevant assumptions for maximum likelihood inference can be found in Gauss and 

Cribari-Neto (2014). 

 

3.1. MLE for the Beta Distribution 
 

Let x1, x2, ..., xn be n independent random variables from the beta distribution with parameters 

a and b, then the likelihood function associated is: 

 

𝑳(𝒂, 𝒃|𝒙) =  (
𝚪(𝒂)𝚪(𝒃)

𝚪(𝒂+𝒃)
)

𝒏

×  ∏ (𝒙𝒊)
𝒂−𝟏(𝟏 − 𝒙𝒊)

𝒃−𝟏𝒏
𝒊=𝟏               (5) 
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Through Eq.(5), the log-likelihood function is: 

 

𝐥𝐨𝐠 𝑳(𝒂, 𝒃|𝒙) = 𝒏 𝐥𝐨𝐠(𝚪(𝒂 + 𝒃)) −  𝒏 𝐥𝐨𝐠(𝚪(𝒂)) − 𝒏 𝐥𝐨𝐠(𝚪(𝒃)) 

                                        +(𝒂 − 𝟏) ∑ 𝐥𝐨𝐠(𝒙𝒊)
𝒏

𝒊=𝟏
+ (𝒃 − 𝟏) ∑ 𝐥𝐨𝐠(𝟏 − 𝒙𝒊)

𝒏

𝒊=𝟏
 

(6) 

 

Taking derivates of Eq.(6) for each parameter, the score functions are: 

 

𝑺𝟏(𝒂, 𝒃) =  
𝝏

𝝏𝒂
 𝐥𝐨𝐠 𝑳(𝒂, 𝒃|𝒙) = 𝒏𝝍 (𝒂 + 𝒃) − 𝒏𝝍(𝒂) +  ∑ 𝐥𝐨𝐠(𝒙𝒊)

𝒏
𝒊=𝟏         (7) 

 

𝑺𝟐(𝒂, 𝒃) =  
𝝏

𝝏𝒃
 𝐥𝐨𝐠 𝑳(𝒂, 𝒃|𝒙) = 𝒏𝝍 (𝒂 + 𝒃) − 𝒏𝝍(𝒃) +  ∑ 𝐥𝐨𝐠(𝟏 − 𝒙𝒊)

𝒏
𝒊=𝟏       (8) 

 

where 𝝍(. ) is the digamma function that is defined as the logarithmic derivative of the 

gamma function: 

 

𝝍(𝒉) =  
𝝏

𝝏𝒉
𝐥𝐨𝐠(𝚪(𝒉))                           (9) 

 

To find 𝒂̂ and 𝒃̂, the MLE estimators, the score functions are set equal to zero. Hence, the 

solution is S1(a, b) = 0 and S2(a, b) = 0. 

Taking further derivates of Eqs. (7) and (8), given the score functions, are twice differenti-

able to a and b, the observed Fisher information matrix K(a, b) is defined by 

 

𝑲(𝒂, 𝒃) =  [
𝒏𝝍𝟏(𝒂) −  𝒏𝝍𝟏(𝒂 + 𝒃) − 𝒏𝝍𝟏(𝒂 + 𝒃)

− 𝒏𝝍𝟏(𝒂 + 𝒃) 𝒏𝝍𝟏(𝒃) −  𝒏𝝍𝟏(𝒂 + 𝒃)
]           (10) 

 

where 𝝍𝟏(. ) is the trigamma function that is defined as the second logarithmic derivative 

of the gamma function: 

𝝍𝟏(𝒉) =  
𝝏

𝝏𝒉
𝝍(𝒉)                           (11) 

Finally, since there is no closed-form solution to find 𝒂̂ and 𝒃̂, it is necessary to betake 

numerical optimization. I apply a Quasi-Newton method called BFGS (and its variant called 

L-BFGS-B), an algorithm that aims to find the local extrema of functions through the esti-

mation of the inverse of the Hessian matrix (Nocedal and Wright, 2006). An advantage of 

the BFGS method is that it allows users to maximize likelihoods without having to specify 

a score function (Cribari-Neto and Zarkos, 2003). 

 

4. Empirical Churn Rate Data 
 

The customer churn data used in this study come from a Brazilian subscription company fo-

cused on digital services. The database constitutes a monthly time series, started in January 

2019, and the last observation is in August 2020. As a result, we have twenty data. The range 

is fairly compacted; the minimum value is 0.075, while the maximum is 0.1190. Table 1 shows 

the summary statistics of the set of observations while Figure 3 presents data visualization 

under three perspectives (histogram, boxplot, and time series plot). 
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Table 1. Descriptive Statistics for the Customer Churn Rate. 

Mean Median Standard Deviation Coefficient of Variation Skewness Kurtosis 

0.1026 0.1015 0.0110 0.1069 -0.4183 -0.1320 

 

The result of the coefficient indicates a low variability of the data set, and the values of the 

sample mean, and median are almost the same. The sample skewness and the sample kurtosis 

are close to the normal distribution. 

The boxplot shows that the set of observations does not present extreme values. The first 

quantile is 0.0950, and the third is 0.1115. The dashed line of the time series plot is the 

sample mean where nine observations are above the mean. Finally, the histogram exhibits 

that most of the data is concentrated between 0.09 and 0.11. 

 

 
Figure 3. Data Visualization of the Churn Rate. 

 

4.1. Analysis of the MLE technique 
 

In the execution of the MLE technique for both programming languages, I use the same starting 

values (𝒂̂ =  𝒃̂ = 𝟓), the BFGS method, and the analytical gradient for the score functions 

and Hessian matrix. In R, convergence problems happened by using the BFGS method. Con-

sequently, it was replaced by the L-BFGS-B, whose lower bounds were equal to 0.01. Moreo-

ver, in Ox, the numerical gradient for the Hessian matrix did not provide accurate values for 

the standard errors. 
Table 2 shows the results of the estimation. Both programming languages generated the same 

estimates and standard errors. 

 

 

Table 2. Results of the Parameter Estimates for the Beta Distribution. 
Measures 𝒂̂ 𝒃̂ 

R – Estimate  79.2383 692.7116 
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R – Standard Error 25.0051 219.2103   

Ox – Estimate  79.2383 692.7116 

Ox – Standard Error 25.0051 219.2103   

Based on the values of the estimates of 𝒂̂ and 𝒃̂, the value of the maximized log-likelihood is 

62.031 and the observed Fisher information matrix evaluated in the estimates is 

𝑲(𝒂̂, 𝒃̂) =  [
𝟎. 𝟐𝟐𝟖𝟎𝟖 −𝟎. 𝟎𝟐𝟓𝟗𝟐𝟓

−𝟎. 𝟎𝟐𝟓𝟗𝟐𝟓 𝟎. 𝟎𝟎𝟐𝟗𝟔𝟕𝟕
] 

The estimates of the mean, variance, and standard deviation of the beta distribution are 

0.1026469, 0.0001191676, and 0.01091639, respectively. Furthermore, Table 3 shows the con-

fidence intervals for each parameter considering a 95% confidence level. 

 

Table 3. Confidence Interval for each Parameter - 95% Confidence Level. 

Parameter Lower endpoint Upper endpoint 

a 38.1086 120.3681 

b 332.1428 1053.281 

 

Figure 4 portrays the estimate of the probability density function based on the values of the 

parameter estimates yielded by the MLE technique. Since both estimates are superior to 1, then 

the density function curve is in the mount shape. 

 

 
Figure 4. Estimated Probability Density Function of the Beta Distribution. 

 

The estimated probability density function specifies that the probability of the churn rate falling 

within a particular range of values above 0.13 or below 0.07 tends to zero, reflecting the fea-

tures of the data set. 

 

4.1.1. Application in Ox 
 

Ox is a matrix programming language developed by Jurgen Doornik, having a similar syntax 
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to C, and holds a maximization package (called maximize) useful to maximize functions of 

many parameters (Podivinsky, 1999). The function that performs BFGS is called MaxBFGS 

which must be written within the main function. 

MaxBFGS holds five arguments: 1 - the function that will be optimized, 2 - the matrix with 

starting values, 3 - the final function value, 4 - 0 (standard argument related to the Hessian 

matrix), 5 - TRUE or FALSE, depending on the type of gradient (analytical - FALSE and 

numerical - TRUE). 

The structure of the maximization of the log-likelihood function divides into three steps: 

(1) Import the libraries and packages. 

(2) Write the log-likelihood function and the matrices of partial derivatives (first order). 

(3) Call the MaxBFGS function. 

 

Step 1: Libraries and Packages required. 

 
 

Step 2: Write the log-likelihood function and the matrices of partial derivates in Ox syntax. 

 

fllbeta is the function that will be maximized by the MaxBFGS function. This function must 

contain four elements: 

(1) Vp is a 2 x 1 matrix of parameter values at which the function is to be evaluated; 

(2) adFunc is the log-likelihood function of the beta distribution - Eq.(6); 

(3) avScore contains the analytical first derivatives of the log-likelihood function - 

Eq.(7) and Eq.(8); 

(4) amHess always 0 for MaxBFGS, as it does not need the Hessi 

#include <oxstd.h> //standard library header 

#include <oxprob.oxh> //probability library 

#import <maximize> //optimization package 

fllbeta(const vP, const adFunc, const avScore, const amHess) 

{ 

decl a = vP[0]; //first parameter  

decl b = vP[1]; //second parameter 

decl nobs = rows(churn); //number of observations 

//churn is the set of observations (vector) 

 

//log likelihood function 

adFunc[0] = nobs * loggamma(a+b) - nobs *loggamma(a) - nobs * loggamma(b) 

+ (a-1) * sumc(log(churn)) + (b-1) * sumc(log(1 - churn)); 

 

//score function  

if(avScore){ 

(avScore[0])[0] = nobs*polygamma(a + b, 0) - nobs*polygamma(a,0) 

+ sumc(log(churn)); 

(avScore[0])[1] = nobs*polygamma(a + b, 0) - nobs*polygamma(b,0) 

+ sumc(log(1.0-churn)); 

} 

 

return 1; // 1 indicates success 

} 
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Step 3: Call the MaxBFGS function. 

 
 

The outputs generated from MaxBFGS are the type of convergence (I found strong conver-

gence), the maximum value of the log-likelihood function, and the estimates. 

Through a call called MaxControl(-1, 1), it is possible to see the result of the value of the 

log-likelihood for each interaction (Figure 5). The program implemented 38th interactions. 

After the 20th interaction, the log-likelihood value reached 62. 

 

 
Figure 5. The Results of the Log-likelihood Value for Each Interaction. 

 

Finally, the code below explains to process to implement the analytical gradient to find 

Fisher’s information matrix and standard errors for each parameter. 

main() 

{ 

decl vp, dfunc, ir, vep; 

vp = <5; 5>; //starting values  

MaxControl(-1,1); //number of interations 

ir = MaxBFGS(fllbeta, &vp, &dfunc, 0, FALSE); //BFGS method 

//Results obtained: 

println("\nCONVERGENCE: ", MaxConvergenceMsg(ir));  

println("\nMaximized log-likelihood: ", "%7.3f", double(dfunc));  

println("\nML estimates: ", "%13.4f", vp’); 

} 
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In a nutshell, the process is to set a matrix and fill it with the elements from the observed 

information matrix (the negative of the second derivative). After, this matrix is inverted, and 

take the root square of elements from the main diagonal from the inverted matrix. 

 

4.1.2. Application in R 
 

R is a language and environment for statistical computing and graphics, like the S language 

(Venables and Ripley (2002)). It contains several functions and libraries related to numerical 

methods, among which the optim function brings the BFGS and L-BFGS-B methods, among 

others. 

Estimating likelihood functions entails a two-step process. First, one declares the log-likeli-

hood function and the score functions. Then one optimizes the log-likelihood function via op-

tim by selecting a numerical method. 

 

Step 1: Declaring the beta log-likelihood function and the score functions. 

 
loglik represents the Eq.(6) and scorefn combines the score functions (Eq.(7) and Eq.(8)) in 

//standard errors obtained from Fisher’s information matrix  

decl nobs = rows(churn); 

decl K = zeros(2,2), Kinv; 

//K is the Fisher’s information matrix 

//Kinv is the inverse matrix of K 

K[0][0] = double(nobs*polygamma(vp[0], 1) - nobs*polygamma(vp[0]+vp[1], 1));  

K[0][1] = K[1][0] = double(-nobs*polygamma(vp[0]+vp[1], 1)); 

K[1][1] = double(nobs*polygamma(vp[1], 1) - nobs*polygamma(vp[0]+vp[1], 1));  

println("Fisher’s information matrix = ", K); 

Kinv = invert(K); 

println("\nInverse Fisher’s information matrix = ", Kinv); print("\n"); 

println("Standard error of \hat{a}: ", "%8.4f", sqrt(Kinv[0][0])); 

println("Standard error of \hat{b}: ", "%8.4f", sqrt(Kinv[1][1])); 

#Log-likelihood function  

logLikBeta <- function(theta){ 

a = theta[1]; #first parameter 

b = theta[2]; #second paramenter 

 

loglik = sum(dbeta(y, a, b, log=TRUE))  

#y is the set of observations (vector)  

return(loglik)} 

 

#Score functions (scorefn) - first-order partial derivatives  

scorefn<- function(theta){ 

a = theta[1]; #first parameter 

b = theta[2]; #second paramenter 

 

cbind(n*digamma(a+b) - n*digamma(a) + sum(log(y)),  

n*digamma(a+b) - n*digamma(b) + sum(log(1-y))) 

#n is the number of observations 

} 
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a vector. The term logLikBeta is the name of the log-likelihood function; this name will be 

used optim. theta is the 2 x 1 matrix of parameter values similar to vP from fllbeta of the Ox 

language. 

 

Step 2: Call the L-BFGS-B method from the optim function. 

 
 
r2 is the object that stores all information associated with the maximization process, including 

the estimates, the maximum value of the log-likelihood function, and other information. c(5,5) 

is the vector with starting values, lower specifies the lower limits for each parameter, this 

bound is connected with the L-BFGS-B method. Finally, we mention that the optim function 

is based on the minimization. Thus, to perform the maximization is necessary to add the fol-

lowing argument control=list(fnscale=-1). 

hessian indicates T or F. If it is T, then it returns a numerical Hessian matrix.  

gr indicates the score functions. If it is NULL, then a finite-difference approximation will be 

used. 

The output produced by r2 is seen below. It consists of five elements. 

 
 
Finally, the code to find the standard errors through the analytical gradient is described below. 

It follows the same steps as in the Ox language. 

r2<- optim(c(5,5), logLikBeta, method="L-BFGS-B",  

lower=c(0.01, 0.01),  

control=list(fnscale=-1), hessian = F, gr = scorefn) 

r2$par #Estimates of the parameters 

 

r2$value #Final value of the log-likelihood function  

 

r2$counts #Vector that reports the number of calls to 

          #the log-likelihood function and the gradient 

 

r2$convergence #Value of 0 indicates normal convergence  

 

r2$message #This shows warnings of any problems 

           #that occurred during optimization 
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5. Concluding Remarks  
 

This study presented the customer churn rate from a different perspective considering the beta 

distribution model. I perform its estimation via MLE in two programming languages, R and 

Ox. Both languages provide the same results. 

The study can be extended in several ways. One can develop confidence intervals under the 

bootstrap technique (Efron and Tibshirani, 1986) and compare it with the classical approach. 

Further, the bootstrap technique also can be used for bias correction, as seen in Gauss and 

Cribari- Neto (2014). Finally, we could compare the beta distribution model with other proba-

bility models whose domain lies between 0 and 1 to see which model fits better via goodness 

of fit tests. 

 

Conflict of Interest Declaration 
 

The author has no conflict of interest to declare and there is no financial interest to report. 

 

 

References 

1. Axelsson, R. Nostam, A. (2017). Identify churn a study in how transaction data can be 

used to identify churn for merchants. Master’s thesis, KTH, School of Industrial Engi-

neering and Management (ITM). 

2. Bhunya, P., Mishra, S., Ojha, C., Berndtsson, R. (2004). Parameter estimation of beta 

distribution for unit hydrograph derivation. Journal of Hydrologic Engineering, 9(4), 

325–332. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(325) 

3. Bierman-Jr, H., Hausman, W. H. (1970). The credit granting decision. Management 

Science, 16(8), B519–B532. 

4. Burez, J., Van den Poel, D. (2007). CRM at a pay-TV company: Using analytical mod-
els to reduce customer attrition by targeted marketing for subscription services. Expert 
Systems with Applications, 32(2), 277–288. 
https://doi.org/10.1016/j.eswa.2005.11.037 

#Step 1 - Fisher’s Information Matrix  

FM<-matrix(1:4,nrow = 2, ncol = 2) 

FM[1,1] = (n * trigamma(est[1])) - (n * trigamma(est[1]+est[2])) 

FM[2,2] = (n * trigamma(est[2])) - (n * trigamma(est[1]+est[2])) 

FM[1,2] = FM[2,1] = ((-1) * n * trigamma(est[1]+est[2]))  

#Fisher Matrix 

FM 

#Step 2 - Inverse of the observed Fisher information  

IFM<- solve(FM) 

IFM 

#Step 3 - Compute the standard errors  

se<-sqrt(diag(IFM)) 

###Standard error output  

se 

https://doi.org/10.1061/(ASCE)1084-0699(2004)9:4(325)
https://doi.org/10.1016/j.eswa.2005.11.037


 Socioeconomic Analytics, 2023, 1(1), 78-91 

 

 

ZAIDAN (2023) 90 

 

 

5. Casella, G., Berger, R. (2002). Statistical Inference. Vol. 2, Duxbury Pacific Grove, Cal-

ifornia. 

6. Chia, E., Hutchinson, M. (1991). The beta distribution as a probability model for daily 

cloud duration. Agricultural and Forest Meteorology, 56(3), 195–208. 

https://doi.org/10.1016/ 0168-1923(91)90091-4 

7. Cribari-Neto, F., Zarkos, S.G. (2003). Econometric and statistical computing using Ox. 
Computational Economics, 21(3), 277–295. https://doi.org/10.1023/A:1023902027800 

8. Efron, B., Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence in-

tervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75. 

https://doi.org/10.1214/ss/ 1177013815 

9. Fader, P., Hardie, B. (2007). How to project customer retention. Journal of Interactive 

Marketing, 21(1), 76–90. https://doi.org/10.1002/dir.20074 

10. Ferrari, S., Cribari-Neto, F. (2004). Beta regression for modelling rates and propor-
tions. Journal of Applied Statistics, 31(7), 799–815. 
https://doi.org/10.1080/0266476042000214501 

11. Gauss, C., Cribari-Neto, F. (2014). An Introduction to Bartlett Correction and Bias 

Reduction. Vol. 1, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-

55255-7 

12. Golenko-Ginzburg, D. (1988). On the distribution of activity time in pert. The Journal 

of the Operational Research Society, 39(8), 767–771. 

https://doi.org/10.1057/jors.1988.132 

13. Gupta, A., Nadarajah, S. (2004). Handbook of Beta Distribution and Its Applica-

tions. CRC Press, Boca Raton. https://doi.org/10.1201/9781482276596 

14. Hadden, J., Tiwari, A., Roy, R., Ruta, D. (2007). Computer assisted customer churn 

management: State-of-the-art and future trends. Computers & Operations Research, 

34(10), 2902–2917. https://doi.org/10.1016/j.cor.2005.11.007 

15. Hajdu, M., Bokor, O. (2014). The effects of different activity distributions on project 

duration in pert networks. Procedia - Social and Behavioral Sciences, 119, 766–

775. https://doi.org/10.1016/j.sbspro.2014.03.086 

16. Hoppner, S., Stripling, E., Baesens, B., vanden Broucke, S., Verdonck, T. (2020). 

Profit driven decision trees for churn prediction. European Journal of Operational Re-

search, 284(3), 920 – 933. https://doi.org/10.1016/j.ejor.2018.11.072 

17. Hung, Y., Balakrishnan, N., Lin, Y. (2009). Evaluation of beta generation algorithms. 

Communications in Statistics - Simulation and Computation, 38(4), 750–770. 

https://doi.org/10.1080/ 03610910802645347 

18. H. Hwang, T. Jung, and E. Suh. An LTV model and customer segmentation based on 

customer value: a case study on the wireless telecommunication industry. Expert Sys-

tems with Applications, 26(2), 181–188. https://doi.org/10.1016/S0957-

4174(03)00133-7 

19. Jung, K., Shin, J., Park, D. (2019). A new approach for river network classification 

based on the beta distribution of tributary junction angles. Journal of Hydrology, 572, 

66–74. https://doi.org/10.1016/j.jhydrol.2019.02.041 

https://doi.org/10.1016/%200168-1923(91)90091-4
https://doi.org/10.1023/A:1023902027800
https://doi.org/10.1214/ss/%201177013815
https://doi.org/10.1002/dir.20074
https://doi.org/10.1080/0266476042000214501
https://doi.org/10.1007/978-3-642-55255-7
https://doi.org/10.1007/978-3-642-55255-7
https://doi.org/10.1057/jors.1988.132
https://doi.org/10.1201/9781482276596
https://doi.org/10.1016/j.cor.2005.11.007
https://doi.org/10.1016/j.sbspro.2014.03.086
https://doi.org/10.1016/j.ejor.2018.11.072
https://doi.org/10.1080/%2003610910802645347
https://doi.org/10.1016/S0957-4174(03)00133-7
https://doi.org/10.1016/S0957-4174(03)00133-7
https://doi.org/10.1016/j.jhydrol.2019.02.041


 Socioeconomic Analytics, 2023, 1(1), 78-91 

 

 

ZAIDAN (2023) 91 

 

 

20. Krishnamoorthy, K. (2016). Handbook of statistical distributions with applications. 

CRC Press, New York. https://doi.org/10.1201/b19191 

21. Lallemant, D., Kiremidjian, A. (2015). A beta distribution model for characterizing 

earthquake damage state distribution. Earthquake Spectra, 31(3), 1337–1352. 

https://doi.org/10.1193/012413EQS013M 

22. Malcolm, D.G., Roseboom, J., Clark, C. E., Fazar, W. (1959). Application of a tech-
nique for research and development program evaluation. Operations Research, 7(5), 
646–669. https://doi.org/10.1287/opre.7.5.646 

23. Nocedal, J., Wright, S. (2006). Numerical Optimization. Vol. 1. Springer New York. 

https://doi.org/10.1007/978-0-387-40065-5 

24. Oguamanam, D., Martin, H., Huissoon, J. (1995). On the application of the beta distri-
bution to gear damage analysis. Applied Acoustics, 45(3), 247–261. 

25. Owen, C. (2008). Parameter estimation for the beta distribution. Master’s thesis, Statis-

tics Department. 

26. Pawitan, P. In all likelihood: statistical modelling and inference using likelihood. Vol. 

1, Oxford University Press, Oxford. 

27. Podivinsky, J. M. (1999). Ox 2.10: beast of burden or object of desire? Journal of Eco-

nomic Surveys, 13(4), 491–502. https://doi.org/10.1111/1467-6419.00094 

28. Seo, I.W., Baek, K.O. (2004). Estimation of the longitudinal dispersion coefficient us-

ing the velocity profile in natural streams. Journal of Hydraulic Engineering, 130(3), 

227–236. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(227) 

29. Sulaiman, M.Y., Hlaing Oo, W.M., Wahab, M.A., Zakaria, A. (1999). Application of 
beta distribution model to Malaysian sunshine data. Renewable Energy, 18(4), 573–
579. https://doi.org/10.1016/S0960-1481(99)00002-6 

30. Vafeiadis, T., Diamantaras, K., Sarigiannidis, G., Chatzisavvas, K. (2015). A compar-

ison of machine learning techniques for customer churn prediction. Simulation Model-

ling Practice and Theory, 55, 1–9. https://doi.org/10.1016/j.simpat.2015.03.003 

31. Venables, W., Ripley, B. (2002). Modern Applied Statistics with S. Vol. 1, 4. Ed., 

Springer New York. https://doi.org/10.1007/978-0-387-21706-2 

32. Hur, Y., Lim, S. (2005). Customer churning prediction using support vector machines 

in online auto insurance service. In: Advances in Neural Networks – ISNN 2005, pages 

928–933. Springer Berlin Heidelberg. https://doi.org/10.1007/11427445_149 

https://doi.org/10.1201/b19191
https://doi.org/10.1193/012413EQS013M
https://doi.org/10.1287/opre.7.5.646
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1111/1467-6419.00094
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(227)
https://doi.org/10.1016/S0960-1481(99)00002-6
https://doi.org/10.1016/j.simpat.2015.03.003
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1007/11427445_149

	1. Introduction
	2. Beta Distribution Model
	2.1. Review of previous works
	3. Parameter Estimation
	3.1. MLE for the Beta Distribution
	4. Empirical Churn Rate Data
	4.1. Analysis of the MLE technique
	4.1.1. Application in Ox
	4.1.2. Application in R
	5. Concluding Remarks
	Conflict of Interest Declaration
	References

