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  Abstract 
 

This study applied spatial analysis techniques to point 

processes to investigate the distribution of fire outbreaks in 

the state of São Paulo during the months of June to 

September 2024. Using data from the Burning Program of 

the National Institute for Space Research (INPE), 

descriptive and inferential analyses were performed, 

including Ripley's K Function and the Kolmogorov-

Smirnov Test, with the aim of testing the hypothesis of 

Complete Spatial Randomness (CSR). The results indicated 

a pattern of spatial clustering in short distances, rejecting 

the hypothesis of randomness. Predictive models based on 

Poisson processes were adjusted, highlighting the most 

vulnerable areas, especially in the Atlantic Forest and 

Cerrado biomes. This work reinforces the importance of 

spatial statistics as an essential tool for identifying patterns 

and planning mitigation strategies, contributing to 

environmental preservation and combating fire outbreaks. 
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1. Introduction 

Fire outbreaks are occurrences that have a significant impact on ecosystems, the economy 

and human health. They can be caused due to natural factors, such as lightning in dry forests, 

but are often the result of human activities, including agriculture, cattle ranching, and 

deforestation. These fires disrupt the rainfall cycle and contribute to long-term climate change 

by affecting temperature and precipitation (IBAMA, 2024). 

Fire monitoring and control measures are essential for environmental preservation. Agencies 

such as the National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais  

- INPE), in Brazil, use satellites to detect hot spots and fires in real time, providing important 

data for the performance of brigades and the application of environmental policies 

(AMBIENTE, 2024). 

Spatial statistics is an area of statistics dedicated to the study of data that has an associated 

geographic location. This field is applied in various areas, such as ecology, epidemiology, 

geology, urban planning, among others. Spatial statistics works with the analysis of patterns, 

distribution, and spatial dependence on data, and is fundamental to understand phenomena 

that occur in a continuous or discrete space (CRESSIE, 1993). 

Within spatial statistics there are point processes, which are used to model the distribution of 

points in a given region of space. These events may represent, for example, the location of 

fire outbreaks, the occurrence of a disease in individuals, or the distribution of species in a 

habitat. A point process is a collection of events that occur in an area or volume and can be 

described by its intensity and its spatial dependence properties (DIGGLE, 2013). 

When analyzing point processes, some hypotheses are formulated to describe the distribution 

of points in space. The Complete Spatial Randomness (Completa Aleatoriedade Espacial - 

CSR) hypothesis assumes that events are randomly distributed in a space, so that any point 

has the same probability of occurrence at any location in the study area. An example of a 

process that accepts this hypothesis is the homogeneous Poisson process. CSR is often used 

as a point of comparison to determine if there is an underlying structure in the data 

(BADDELEY, RUBAK, & TURNER, 2015). 

To test the hypothesis of Complete Spatial Randomness (Completa Aleatoriedade Espacial - 

CSR) in point processes, several functions can be used. These functions evaluate whether the 

points are randomly distributed in space or whether there is some kind of underlying 

structure, such as agglomeration or dispersion of the data. Some of the most used functions 

are: Ripley's K function; Nearest Neighbor G function; Function F of Empty Space 

(BADDELEY, RUBAK, & TURNER, 2015). 

Based on this, the objective of this work is to carry out a spatial analysis in specific processes 

based on the behavior of fire outbreaks that occurred in the state of São Paulo between the 

months of June and September of the year 2024. As specific objectives we have: To test the 

hypothesis of Complete Spatial Randomness (CSR) and to investigate whether the data 

correspond to a homogeneous Poisson process; verify whether the distribution of fire 

outbreaks in the state follows a random, systematic or grouping pattern; adjust a model for 
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predicting fire outbreaks in the state; to ascertain which regions of the state were most 

affected by fires during the study period. 
 

2. Materials and Methods 

The database under study comes from the Queimadas Program of the National Institute for 

Space Research (Instituto Nacional de Pesquisas Espaciais - INPE), a page that offers real-

time data on fire outbreaks in Brazil (INPE, 2024). It consists of 12 variables and 4819 

observations, and corresponds to the fires that occurred in the state of São Paulo between the 

months of June and September 2024, was requested on the website in csv format and received 

by email in a compressed folder. Table 1 shows the variables contained in the database and 

their respective classifications. 

Table 1: Table of variables and their classifications 

 

Variables Classifications 

DataHora Continuous quantitative 

Satelite Nominal qualitative 

Pais Nominal qualitative 

Estado Nominal qualitative 

Municipio Nominal qualitative 

Bioma Nominal qualitative 

DiaSemChuva Discrete quantitative 

Precipitação Continuous quantitative 

RiscoFogo Continuous quantitative 

Latitude Continuous quantitative 

Longitude Continuous quantitative 

FRP Continuous quantitative 

Source: Prepared by the author (2024). 

To perform the analysis, some descriptive statistics techniques will be applied in order to 

observe the behavior of fire outbreaks in the state of São Paulo. Then, spatial statistics 

methods will be used to evaluate and understand, through maps, the occurrences of fire in the 

state, as well as to ascertain possible indications of clustering in the distribution of the 

outbreaks. In addition, non-parametric tests will be applied to confirm the existence of any 

pattern in the distribution of fires, as well as a model adjustment for the prediction of fire 

occurrences during the study period. It is worth mentioning that all the analysis was carried 

out through the free R Studio software, the list of commands is available at request. 

 

2.1 Kernel Intensity Estimator 

The Kernel Intensity Estimator is an essential tool in spatial statistics to estimate the intensity 

of points over an area, i.e., to measure the “density” of events in different parts of space. It is 

a smoothing technique that calculates the density of points around each location, providing a 

continuous estimate of the intensity of the process at any point in space. This method 
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involves choosing a kernel function and a bandwidth that determines the radius of influence 

of each point on the surrounding area (DIGGLE, 2013). 

From the concepts presented, suppose that 𝑢1, … , 𝑢𝑛 are locations of 𝑛 observed events in a 

region 𝐴 and that 𝑢 represents a generic location whose value we want to estimate. The 

intensity estimator is computed from the 𝑚 events {𝑢𝑖, … , 𝑢𝑖+𝑚−1} contained in a radius of 

size 𝜏 around 𝑢 and the distance 𝑑 between the position and the ith sample, from functions 

whose general form is (CÂMARA & CARVALHO, 2004): 

 

 (1) 

 

This estimator is called kernel estimator and its basic parameters are: (a) a radius of 

influence (𝜏 ≥ 0) which defines the vicinity of the point to be interpolated and controls the 

“smoothing” of the generated surface; (b) an estimation function with properties of 

smoothing the phenomenon. The radius of influence defines the area centered on the point 

of view 𝑢 which indicates how many events 𝑢𝑖 contribute to the estimation of the intensity 

function 𝜆 (CÂMARA & CARVALHO, 2004). 

 

2.2 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov (KS) Test is a statistical test that can be applied in the analysis 

of point processes to compare the observed distribution of events with a theoretical 

distribution, such as the hypothesis of Complete Spatial Randomness (CSR). It measures 

the difference between the observed and expected cumulative distributions and provides a 

statistic that indicates whether this difference is statistically significant. If the value of the 

test is high, the hypothesis that the distribution of the points follows the theoretical pattern 

is rejected (BADDELEY, RUBAK, & TURNER, 2015). 

This test is used to verify whether an observed distribution of points differs significantly 

from the expected distribution under CSR, and is useful for validating or rejecting the 

hypothesis of spatial randomness. The test statistic is: 

 𝐷 = 𝑠𝑢𝑝𝑥|𝐹𝑛(𝑥) − 𝐹(𝑥)|, (2) 
   
where 𝐷 is the largest difference between the observed and theoretical cumulative distributions, 𝐹𝑛(𝑥) 
is the function of empirical distribution of the observed data and 𝐹(𝑥) is the cumulative distribution 

function of the theoretical hypothesis (under CSR). The value of 𝐷 is compared with critical values to 

decide whether to reject the null hypothesis (BADDELEY, RUBAK, & TURNER, 2015). 

 

2.3 Function K of Ripley 

The Function K of Ripley it is widely used to evaluate spatial patterns and test the CSR 

hypothesis in point processes. It calculates the average number of points found within a 

given distance h from each point in the process, comparing it with the expected number of 

points under the hypothesis of complete randomness (BADDELEY, RUBAK, & 
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TURNER, 2015). 

For a completely random process, Function K must grow linearly with ℎ2. Deviations 

above this line indicate a crowding trend (excess of points within the distance ℎ), while 

deviations below indicate repulsion. The K-Function is useful at various scales, as it 

allows you to assess the presence of spatial patterns at different distance levels (DIGGLE, 

2013). It is defined as: 

𝜆𝐾(ℎ) = 𝐸(# events contained at a distance h from an arbitrary event) 

where # is associated with the number of events, 𝐸( ) is the estimation operator, and 𝜆 is 

the intensity or average number of events per unit area, assumed to be constant in the 

region (CÂMARA & CARVALHO, 2004). 

An estimate of K (ℎ) is: 

 

     (3)   

 

 

where 𝐴 is the area of the region, 𝑛 is the number of events observed, 𝐼ℎ(𝑑𝑖𝑗) is an indicator 

function whose value is 1 if (𝑑𝑖𝑗) ≤ ℎ and 0 otherwise, and 𝑤𝑖𝑗 is the proportion of the 

circumference of the circle centered on event i that is within the region (correction due to 

edge effect) (CÂMARA & CARVALHO, 2004). 

 

2.4 Modelling 

Point models of intensity are a class of models in spatial statistics that focus on describing 

the intensity of a point process in different regions of space. The intensity 𝜆(𝑠) It is a 

function that indicates the expected density of points at a location 𝑠, and is a central element 

in modeling spatial patterns. These models are widely used to analyze the spatial 

distribution of events such as fire outbreaks, disease outbreaks, or crime in a city, where the 

intensity reflects the probability of events occurring in different parts of space (DIGGLE, 

2013). 

The intensity 𝜆(𝑠) is defined as the expected rate of events per unit area at the point 𝑠, given 

by: 

(4) 

 

where 𝑁(∆𝑠) is the number of points in the region ∆𝑠, |∆𝑠| is the area of the region ∆𝑠 and 

𝐸[𝑁(∆𝑠)] is the expected value of events in ∆𝑠. If 𝜆(𝑠) is constant throughout the region of 

interest, the process is said to be homogeneous, otherwise it is inhomogeneous 

(BADDELEY, RUBAK, & TURNER, 2015). 

There are several point models that are used in spatial statistics to describe and analyze 
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patterns of points in a geographic space, the most used being: Poisson process; 

Agglomeration Models; Repulsion Models; Specific processes scheduled. These models 

use as parameters and estimates the functions of intensity and spatial dependence 

(ILLIAN, PENTTINEN, STOYAN, & STOYAN, 2008). 

The Poisson Process is the simplest model and assumes Complete Spatial Randomness 

(CSR), where the points are independent and have a constant probability of occurring 

anywhere in the study region. Some of its properties is that there is no interaction between 

the points (neither attraction nor repulsion) and the intensity 𝜆 is constant in the 

homogeneous case (𝜆(𝑠) = 𝜆). In the inhomogeneous case, the intensity is allowed 𝜆(𝑠) 
vary spatially, being modeled as a function of spatial covariates 𝑋(𝑠): 

𝜆(𝑠) = exp (𝛽0 + 𝛽1𝑋1(𝑠) + 𝛽2𝑋2(𝑠) + ⋯ + 𝛽𝑝𝑋𝑝(𝑠)), 

where 𝛽𝑖 are the coefficients associated with the covariates (ILLIAN, PENTTINEN, 

STOYAN, & STOYAN, 2008). 

To compare homogeneous and inhomogeneous Poisson models, it is necessary to use the 

Akaike Information Criterion (AIC), widely used in the selection of statistical models, 

including point models. It balances the quality of the model's fit with its complexity, 

penalizing the use of many parameters. The AIC is calculated by the formula 𝐴𝐼𝐶 = −2 

log(𝐿) + 2𝑘, where 𝐿 is the verisimilitude of the adjusted model and 𝑘 is the number of 

parameters of the model. Models with lower AIC values are preferable, as they indicate a 

good balance between fit and simplicity (AKAIKE, 1974). 

 

3. Application 

The state of São Paulo is composed of the characteristic plant formations of the Cerrado, 

which corresponds to 32.7% of the state area, and the Atlantic Forest, equivalent to 67.3%. 

From Figure 1, it can be seen that these biomes were affected in an equivalent way by fire 

outbreaks, however, it can also be observed that there is a slight difference between them, 

which makes the Atlantic Forest the biome most affected by fires in the state. It is worth 

noting that the Atlantic Forest and the Cerrado are considered hotspots (environments with 

high biodiversity, and highly threatened by human action in nature), as they have suffered 

great loss of habitats, so they have a high risk of disappearing. 
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Figure 1: Bar chart for fire outbreaks in the biomes of the state of São Paulo. 
 

 

Figure 2 shows, through a time-series line graph, the number of fires that occurred during 

the study period, referring to the months of June to September 2024. It can be seen that in 

the first months (June and July) the number of fires in the state was low, with a constant 

occurrence of outbreaks over the days. By the end of August, a worrying increase in fire 

outbreaks can be observed based on the registration of more than 1500 occurrences in a 

single day. This increase may be linked to the dry season in the state, which lasts from 

May to August, with August being the month with the lowest number of days with 

precipitation. 

 
Figure 2: Time series for the number of fire outbreaks during the period studied. 

 

 

Based on the map in Figure 3, it is noted that the highest density of foci seems to be 

concentrated in the northeastern region of the state, possibly in areas of more susceptible 

vegetation, such as transition biomes between the cerrado and forests. In addition, the 

presence of outbreaks spread throughout almost the entire state is noticeable, however, 
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some areas have a lower incidence, such as the metropolitan region of São Paulo, which is 

more urbanized. Many of these occurrences may be related to agricultural practices, such 

as fires to clear land or expand arable areas. 

 
Figure 3: Map for the distribution of fire outbreaks in the state of São Paulo. 

 

 

 

From Figure 4 that shows the graph of Ripley's K function, it can be seen that the observed 

function (𝐾̂𝑏𝑜𝑟𝑑(𝑟)) is above the reference line of the random pattern (𝐾𝑝𝑜𝑖𝑠(𝑟)). This 

indicates that the fire outbreaks are aggregated on small scales, that is, there are clusters of 

fires in proximity. In addition, it can be seen that as the distance increases, the black line 

remains above the red line, suggesting that the aggregation pattern is maintained at 

different spatial scales. Thus, the distribution of fire outbreaks is not random, as it shows a 

pattern of grouping. 

 
Figure 4: Graph of Ripley's K function. 
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Based on Figure 5, it can be seen that the observed function (𝐺̂𝑜𝑏𝑠(𝑟)) deviates 

considerably from the theoretical function (𝐺𝑡ℎ𝑒𝑜(𝑟)), especially for short distances. This 

suggests that the spatial distribution of fire outbreaks does not follow a completely random 

pattern. In addition, it is noted that the black line (𝐺̂𝑜𝑏𝑠(𝑟)) exceeds the 

confidence interval limits (𝐺̂ℎ𝑖(𝑟) and 𝐺̂𝑙𝑜(𝑟)), indicating that the hypothesis of Complete 

Spatial Randomness (CSR) should be rejected. With this, there is evidence to believe that 

fire outbreaks follow a pattern of spatial grouping, especially at short distances. 

 
Figure 5: Graph of the Kolmogorov-Smirnov test for complete spatial randomness. 

 

 

Table 2 shows that models 1 and 2 have similar ICAs, suggesting that both have almost 

identical performances in terms of fit and complexity. In addition, it can be observed that 

model 3 has the lowest AIC value, indicating that it presents the best fit among the models 

evaluated, despite being potentially more complex. 

 
Table 2: AIC information criterion of the adjusted models 

 

Model 1 Model 2 Model 3 

-35572.290 -35572.580 -37413.860 

 

Based on Table 3, it can be seen that the estimated coefficients for the intercept and 𝑦 are 

statistically significant and have a substantial and precise impact on the dependent 

variable. The intercept represents the expected value of the number of fire outbreaks when 

all explanatory variables are equal to zero. In this case, when 𝑦 = 0, an average of about 

14,610 fires are expected. 

The coefficient of 𝑦 indicates that for each increase of one unit in the variable 𝑦, the 

expected number of fire outbreaks increases by 0.450. The positive relationship between 𝑦 

and fire outbreaks suggests that as 𝑦 increases, fire outbreaks also tend to increase. This 

can be relevant for prevention planning, especially at critical times of the year, such as dry 

seasons. 
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    Table 3: Model 3 metrics 

  

Parameter Estimate Standard Error Lower 95% CI Upper 95% CI Z Value 

Intercept 14.610 0.241 14.137 15.082 60.625*** 

y 0.450 0.011 0.428 0.472 40.437*** 

*** significant to 0.1%. 

 

The contour map in Figure 6 shows the intensity of points per unit area, from which it can 

be seen that the highest concentration of fire outbreaks (areas in pink) is located in the 

northern region of the state. The green areas, which indicate lower fire intensity, cover the 

southwest and south of the state, regions possibly less affected by fire outbreaks. The 

isolines represent constant levels of focus intensity. 

The closer these lines are to each other, the greater the variation in intensity in a smaller 

area, which indicates a more localized concentration of the foci. This spatial distribution 

may be related to factors such as: Dry climate or seasonality in certain areas; land use, 

such as the presence of agricultural or forest areas; proximity to urban regions, which may 

have a lower incidence due to less vegetation cover. 

 
Figure 6: Contour map for the intensity of points per unit area. 

 

 

4. Conclusion 

Based on the objectives outlined, it is possible to conclude that the spatial analysis of the 

fire outbreaks that occurred in the state of São Paulo during the period from June to 

September 2024, provided important subsidies to understand the patterns of occurrence of 

these events. 

Initially, the descriptive analysis showed that the Atlantic Forest and Cerrado biomes, 

highly threatened, were the most affected, with the northeastern region of the state being 

particularly vulnerable. In addition, statistical tests and spatial modeling confirmed that the 

distribution of fire outbreaks does not follow a random pattern, rejecting the hypothesis of 
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Complete Spatial Randomness (SRF). 

The use of tools such as Ripley's K function and the Kolmogorov-Smirnov test showed a 

pattern of clustering over short distances, suggesting the presence of underlying factors 

that favor the concentration of fires in certain regions. The adjustment of the models 

indicated the ability to predict areas more prone to fires, a valuable contribution to 

mitigation strategies and allocation of combat resources. 

Therefore, the study achieved its objectives by identifying distribution patterns, testing 

hypotheses, and adjusting predictive models, reinforcing the importance of spatial 

statistics as an essential tool for understanding and managing fire outbreaks. The findings 

can support more effective public policies and preventive actions in the context of 

environmental preservation. 
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