

APPENDIX

<u>Table 1</u>: Determinants of rice consumption by T1 treatment adoption

Total rice consumption per	Coef	Error.standard	t	p> t
household				
T1	-17,528 ***	2,994	-5,85	0,000
Nbre_parcelle	0,715	0,799	0,89	0,372
Actv_prin	1,232	3,890	0,32	0,752
Feminine	0,220	3,890	0,06	0,954
Bachelor	-4,932	9,951	-0,50	0,620
Marié_monogame	6,041 *	3,514	1,72	0,086
Marié_polygame	7,709 **	3,636	2,12	0,034
Literacy	-3,689	5,175	-0,71	0,476
Aucune_éducation_form	-0,560	4,131	-0,14	0,892
Main_oeuvre	0,061 ***	0,018	3,40	0,001
Age_cm	-0,024	0,077	-0,31	0,754
Saison_cult	18,586 ***	4,998	3,72	0,000
Tail_ménag	1,854 ***	0,196	9,46	0,000
Against	42,793 ***	7,069	6,05	0,000

<u>Note</u>: significance level 1%; 5% and 10% respectively for ***; ** and *. <u>Source</u>: Authors, based on data from DAPSA and AHS (2017). Number of observations = 747, Prob>F=0.000 R squared = 0.2274, R squared = 0.2115.

Analysis of this table shows that there are 747 observations and that the model is overall significant at the 1% level with an adjusted R of 0.2112. These results show that the adoption of fertilizers (NPK and urea) has a negative impact on the monthly amount of rice consumed at the 1% threshold. The Status marital depicted by the variables "marié_monogame" and the "marié_polygame" has a positive and significant effect on the amount of rice consumed by the household during the month at the 10% and 1% thresholds. We find that when the head of the household is a monogamous married man, his monthly rice consumption increases by 6 kg, while if he is polygamous, his consumption increases by 7 kg. These results imply that

households with a married head of household have a higher rice consumption than unmarried households.

The positive and significant effect of household size on the amount of rice consumed also confirms the important place of rice in Senegal's dietary habits. The "main_ work" variable also contributes significantly, to the tune of 6.1 kg, to the amount of rice consumed by households. Similarly, variable tail_ménag has a significant effect on household rice consumption. The latter increases consumption by 1.85 kg.

<u>Table 2</u>: Determinants of rice consumption by T2 treatment adoption

Total	rice	Coef	Error.standard	T	p> t
consumption	per				
household					
T2		2,36	3,08	0,77	0,443
Nbre_parcelle		0,36	0,74	0,49	0,626
Actv_prin		-0,36	3,11	-0,12	0,907
Feminine		-7,42 **	3,52	-2,11	0,035
Bachelor		-10,99	8,26	-1,33	0,184
Marié_polygame		-9,01 ***	2,31	-3,89	0,000
Main_oeuvre		0,08	0,02	3,21	0,001
Age_cm		-0,11	0,07	-1,48	0,140
Tail_ménag		1,22 ***	0,18	6,68	0,000
Against		68,31 ***	6,45	10,59	0,000

Note: significance level 1%; 5% and 10% respectively for ***; ** and *.

The results in this table show that the main determinants of the adoption of the T2 treatment on total rice consumption are the variables "Female", "marié_polygame" and "tail_ménage". Analysis of the results reveals that the variables "Female" and "marié_polygamme" have a negative effect on total household rice consumption, while household size has a positive effect.

<u>Table 3</u>: Determinants of rice consumption by T3 treatment adoption

Consumption	Coef	Error.standard	t	p> t
Total Rice in the				
Household				
Т3	-16,74	13,01	-1,29	0,199

Nbre_parcelle	1,05	0,72	1,45	0,149
Actv_prin	1,32	2,98	0,44	0,657
Feminine	-13,63 ***	4,87	-2,80	0,005
Bachelor	-13,53	8,36	-1,62	0,107
Marié_polygame	-4,38	5,15	-0,85	0,396
Age_cm	-0,14 **	0,07	-1,98	0,049
Tail_ménag	1,07 ***	0,17	6,24	0,000
Against	71,80 ***	7,69	9,33	0,000

Note: significance level 1%; 5% and 10% respectively for ***; ** and *.

Estimating the uptake of T3 treatment shows that variables such as "female", "age_cm" and "taill_ménag" have a significant effect on total household rice consumption. Indeed, most variables negatively affect total consumption, with the exception of the variable "taill_ménag" which has a positive impact on consumption.