(Retracted) Cluster analysis applied to fuel price data in Campina Grande
DOI:
https://doi.org/10.51359/2965-4661.2024.265075Keywords:
Cluster Analysis, K-means, fuel price, transport, Data AnalyticsAbstract
This work uses cluster analysis to analyze similarities in the prices of regular gasoline and ethanol in Campina Grande-PB, Brazil. This multivariate statistical technique groups similar elements into distinct clusters using the non-hierarchical method (k-means). The analysis reports three clusters: cluster 1 has the lowest prices, while cluster 3 has the highest. We report descriptive statistics and a discussion based on the empirical local context.
References
Campina Grande (2024). Pesquisa de combustíveis – outubro 2024. Procon Campina Grande. Disponível em:
https://procon.campinagrande.pb.gov.br/pesquisa-de-combustiveis-outubro-2024/. Acessado em 15/12/2024
Doni, M. V. (2004). Análise de cluster: métodos hierárquicos e de particionamento. Universidade Presbiteriana Mackenzie.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis. New Jersey, 5(3), 207-219.
Petróleo, G. N. e. B. Agência Nacional do. (2017). Cartilha do posto revendedor de combustíveis.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Richard Silva, Thaisa Azevedo, Hiago Martins, Lucas Cardoso Pereira

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with Socioeconomic Analytics retain the copyright of their work and agree to license it under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This means that the work can be shared, copied, and redistributed in any medium or format, as long as it is not used for commercial purposes, and the original work is properly cited. The work cannot be changed in any way or used to create derivative works.