Seccionando corretamente as resinas compostas
Selecting correctly the composite resins

Paulo Correia de Melo Júnior¹
Randerson Menezes Cardoso¹
Bruno Gama Magalhães¹
Renata Pedrosa Guilmarê¹
Cláudio Heliomar Vicente Silva³
Lúcia Carneiro de Souza Beatrice⁴

1 - Mestrando em Clínica Integrada pela
Universidade Federal de Pernambuco,
Recife, PE
2 - Doutoranda em Clínica Integrada pela
Universidade Federal de Pernambuco,
Recife, PE
3 - Professor Adjunto da Universidade
Federal de Pernambuco, Recife, PE
4 - Professora Associada da Universidade
Federal de Pernambuco, Recife, PE

Correspondência:
Profa. Lúcia Beatrice
Av. Prof. Moraes Rego 1235
Cidade Universitária, Recife-PE
50670-901
E-mail: luciabeatrice@uol.com.br

RESUMO
A partir do desenvolvimento do monômero de Bisfenol A-
glicidilmetacrilato (Bis-GMA) sintetizado em 1956 pelo Dr. Rafael
Bowen, surgiram as primeiras resinas compostas que vêm sendo
aprimoradas com o intuito de melhorar cada vez mais seu
desempenho clínico. As resinas compostas são utilizadas amplamente
nos dias atuais como o primeiro material de escolha nas restaurações
diretas, especialmente devido à necessidade estética pleiteada pelos
pacientes. A busca incessante por materiais com propriedades físico-
químicas cada vez melhores, fez com que atualmente exista um
grande número de resinas compostas no mercado odontológico,
dificultando a seleção do material por parte do profissional para as
diversas situações clínicas encontradas. O presente trabalho teve
como objetivo realizar uma revisão literária sobre as principais
características das resinas compostas, assim como também suas
indicações e limitações, no intuito de facilitar a correta seleção nas
diversas situações clínicas e proporcionar uma melhor qualidade
estética e funcional das restaurações.

Palavras-chave: Resinas Compostas; Estética Dentária; Oclusão
dentária

ABSTRACT
From the development of the monomer bisphenol A-glicidilmetacrilato
(Bis-GMA) synthesized in 1956 by Dr. Rafael Bowen brought the first
composite resins that are being improved in order to constantly
improve their clinical performance. The composite resins are widely
used today as the first material of choice for direct restorations,
especially given the aesthetic necessity being claimed by patients.
The incessant search for materials with physicochemical properties
best ever, led to today there are a large number of composites in the
dental market, making difficult the selection of material from the
professional to the various clinical situations encountered. This study
aimed to conduct a literature review on the main characteristics of
composite resins, as well as its indications and limitations in order to
facilitate the correct selection in different clinical situations and
provide better aesthetic and functional restorations.

Keywords: Composites Resins; Esthetics; Dental; Dental Occlusion

INTRODUÇÃO
A busca por um material direto com
características ópticas semelhantes à
estrutura dentária culminou no
desenvolvimento das resinas compostas.
Muitos anos de pesquisas foram necessários
para que algumas desvantagens iniciais
como alto coeficiente de expansão térmica,
desgaste excessivo, sorção de água,
descoloração e alta contração de
polimerização fossem minimizadas. Os
insucessos da resina acrílica quimicamente
ativa e das resinas epôxicas para
restauração dos elementos dentários
culminaram no desenvolvimento de um
novo monômero, chamado bisfenol glicídil
metacrilato (Bis-GMA) que mais tarde
acabaria aprimorado com a adição de
partículas inorgânicas, sendo então
chamado de resina composta. Em 1964, foi
disponibilizada a primeira resina composta
com o nome de Advent (3M), apresentada
na forma de pó e líquido. Em 1969, foi
lançada a primeira resina composta na
versão pasta/pasta chamada Adaptic
(Johnson & Johnson) que acabou se
tornando bastante popular em todo mundo e
até nos dias atuais ainda é utilizada em
alguns procedimentos clínicos¹.

A progressiva evolução tecnológica
deste material, ao longo dos anos,
proporcionou uma grande variabilidade de
produtos e por isso o cirurgião-dentista
encontra dificuldades em selecionar
corretamente o tipo de resina composta
para cada situação clínica. Daí a proposta
desta revisão literária sobre as principais
características das resinas compostas,
indicações e limitações, a fim de facilitar o

Int J Dent, Recife, 10(2):91-96, abr./jun., 2011
http://www.ufpe.br/ijd
91
procedimento de seleção do material.

REVISÃO DA LITERATURA

A resina composta é formada por uma matriz orgânica, inorgânica e um agente de união. A matriz orgânica é constituída por monômeros, inibidores, modificadores de cor e sistema iniciador/ativador. Os monômeros, principal componente da matriz orgânica, têm a função de formar uma massa com plasticidade para ser à estrutura dentária perdida. Os mais utilizados são: Bis-GMA, UDMA, TEGDMA e o EGDMMA. A incorporação de partículas de carga inorgânica (quartzo, sílica coloidal ou partículas de vidro) tem a função básica de aumentar as propriedades mecânicas da resina reduzindo a quantidade de matriz orgânica, minimizando desvantagens como: contração de polimerização, alto coeficiente de expansão térmica linear e sorção de água. O agente de união é responsável pela integração das partículas de carga à matriz orgânica, para que as partículas de carga cumpram a função de aumentar as propriedades mecânicas e reduzir a sorção de água e o coeficiente de expansão térmica linear. Comparando com os metacrilatos o Bis-GMA é muito superior em peso molecular, apresenta baixa contração de polimerização, maior rapidez de polimerização e maior rigidez.

As resinas compostas são classificadas pela maioria dos autores pelo tamanho médio das partículas de carga, viscosidade e forma de ativação.

- Quanto ao tamanho médio das partículas inorgânicas

Resinas macroparticuladas

Resinas macroparticuladas são resinas compostas também conhecidas como tradicionais ou convencionais. Nestas, as partículas de carga mais comumente utilizadas são quartzo inorgânico ou vidro de estrôncio ou bário, que, apesar de apresentarem uma variação de tamanho entre 5 e 12µm, podem mostrar-se esporadicamente em tamanhos de até 100µm. O quartzo era muito utilizado nos primeiros compostos, mas apresentava radiopacidade menor que a dentina apesar da excelente estética e durabilidade. Como a radiopacidade é uma exigência atual, foi substituído pelos vidros radiopacos de estrôncio e de bário. Essas resinas, devido às grandes dimensões de suas partículas de carga são difíceis de polir, além disso, há um desgaste preferencial da matriz resinosa expondo as partículas maiores e mais resistentes que, durante a função, podem ser deslocadas formando pequenas crateras. Clinicamente observa-se redução de brilho superficial e aumento na suscetibilidade ao manchamento devido à facilidade em reter pigmentos. Essas resinas não são mais utilizadas nos dias atuais devido às desvantagens e como exemplo, pode-se citar a Adaptic (Johnson & Johnson) e a Concise (3M).

Resinas microparticuladas

As resinas microparticuladas possuem carga aproximadamente 300 vezes menor que uma partícula de quartzo, da ordem de 0,04µm e são feitas de sílica pirogênica ou sílica coloidal. Assim, comportam-se muito bem clinicamente quando utilizadas em regiões anteriores com envolvimento estético direto e em locais próximos ou em contato com os tecidos gengivais. Possuem propriedades físicas e mecânicas que são inferiores às resinas compostas tradicionais, o que limita sua utilização em regiões sujeitas à estresse mastigatório. Além disso, apresentam maior sorção de água, alto coeficiente de expansão térmica, alta contração de polimerização, baixo módulo de elasticidade e baixa resistência à tração. Podem ser utilizadas como uma delgada película superficial nas restaurações anteriores com envolvimento estético, mas devido à evolução das resinas microhíbridas, estão ficando cada vez mais em desuso, como a Durafill VS (Külzer) e a Silux-Plus (3M).

Resinas híbridas ou microhíbridas

As resinas compostas híbridas ou microhíbridas são uma mistura de micropartículas com macropartículas, apresentando, portanto, características dos dois tipos de materiais. Apresentam na sua maioria, cerca de 10 a 20% em peso de micropartículas de sílica coloidal e 50 a 60% de macropartículas de vidro de metais pesados, totalizando um percentual de carga entre 75 e 80% em peso. A diferença entre híbrida e microhíbrida está, basicamente, no tocante à proporção de partículas utilizadas em relação ao seu tamanho, percebendo-se que as resinas microhíbridas possuem em sua mistura uma maior quantidade de
partículas menores que as resinas híbridas\(^4\). A alta quantidade de carga inorgânica confere alta resistência, baixa expansão e contração térmica, baixa contração de polimerização e fácil acabamento, desgaste relativamente baixo e rugosidade superficial comparável às resinas de micropartículas, fazendo com que estes materiais sejam indicados para restaurações em dentes anteriores e posteriores\(^2\). Cita-se como exemplo a Charisma (Külenz), Tetric Ceram (Vivadent) e a Z 250 (3M).

Resinas nanohíbridas e nanoparticuladas

A nanotecnologia é a aplicação tecnológica em escala nanométrica de 0,1 a 100 nanômetros. Seu advento coincide com a publicação, em 2003, do trabalho de Mitra e colaboradores “An application of nanotechnology in advanced dental materials” o qual divulgou a criação de um compósito restaurador universal com o emprego da tecnologia “nano” – a Filtek Supreme, (3M). O conteúdo de partículas nanométricas diminui a contração de polimerização e promove uma lisura superficial bastante satisfatória\(^6\) (FERRAZ, 2008).

As resinas nanoparticuladas foram introduzidas no mercado odontológico com o objetivo de atender à crescente demanda por um material restaurador universal, ou seja, que pudesse ser usado tanto em dentes anteriores como em posteriores\(^7\). O intuito destas formulações seria também a de proporcionar compósitos de consistência mecânica similar às resinas compostas microhíbridas conciliadas à vantagem de alto polimento das resinas compostas de micropartículas\(^6\).

A utilização da nanotecnologia também possibilitou avanço na radiopacidade dos materiais dentários, logo melhores condições no diagnóstico de cáries secundárias e controle da interface dento-restauração. As resinas que empregam a nanotecnologia são distribuídas no mercado em dois tipos: as resinas nanoparticuladas, cuja composição envolve apenas partículas de proporções nanométricas; e as nanohíbridas, que possuem nanopartículas em sua fórmula. Pode ser citada como nanoparticuladas as resinas Filtek Supreme e Filtek Z350 (3M) e Evolu-X (Dentsply) e Brilliant (Vigodent) como nanohíbridas. As partículas inorgânicas das resinas nanoparticuladas apresentam-se de duas formas: uma dispersa – partículas de sílica, da ordem de 20nm; e outra aderida, nanocomplexos de sílica-zircônia, que se comportam como uma estrutura única, medindo 75nm em média. A combinação destas duas formas proporciona um maior percentual de partículas de carga e resistência ao material\(^9,10,11\).

No quadro 1, encontra-se um resumo das resinas compostas em relação ao tamanho de suas partículas inorgânicas com suas principais indicações, vantagens e desvantagens, de acordo com o tamanho médio de suas partículas inorgânicas e exemplos baseados nas informações técnicas dos fabricantes.

- Quanto à viscosidade

As resinas podem ser classificadas em baixas, médias e alta viscosidade. A maioria das resinas compostas apresenta uma viscosidade média. Tentando suprir as deficiências relacionadas às propriedades de manipulação, surgiram resinas “condensáveis” que possuem alta viscosidade, aderindo menos aos instrumentos de inserção e com baixo escoamento. Por outro lado, apresentam pouca estética, devido ao baixo número de cores comercializadas, dificuldade no polimento e maior rugosidade. As propriedades da resina condensável foram conseguidas com a modificação apenas do monômero diluente. Essas apresentam como desvantagens altas tensões de contração na polimerização e menor capacidade de molhamento às paredes cavitàrias. Citamos como exemplo a Filtek P60 (3M ESPE) e a ROK (SDI). Isto levou à criação de resinas de baixa viscosidade, denominadas de flow, lançadas no mercado no final de 1996. A menor viscosidade permite um maior escoamento nas regiões cavitàrias de difícil acesso, tais como margens cervicais de cavidades de classe II. Apresentam como desvantagem menor módulo de elasticidade e baixa resistência à compressão\(^1\). Como exemplo temos a Natural Flow (DFL) e a Wave (SDI). No quadro 2, observa-se um resumo das resinas compostas quanto a sua viscosidade em relação ao tamanho das partículas inorgânicas.
Quanto à Viscosidade	Quanto ao tamanho das partículas Inorgânicas
Baixa viscosidade | Micro-híbridas (Flow)
Média viscosidade | Micropartículas
Alta viscosidade | Macropartículas e Micro-híbridas (condensáveis)

Quadro 2 – resinas compostas de acordo com a viscosidade

- Quanto à forma de ativação

As resinas compostas podem também ser classificadas com relação ao sistema de ativação, dividindo-se em fotoativadas ou quimicamente ativadas. As resinas fotoativadas são ativadas por luz visível (azul) com comprimento de onda variando entre 400 a 500 nm. Na presença dessa luz, a canforoquinona desencadeia o início da polimerização produzindo íons radicais. O sistema de radicais livres, ativador de polimerização, consiste dessa molécula fotoiniciadora (canforoquinona) e de uma amina ativadora, como uma amina terciária, que ao serem expostos à luz, produzem um estado excitado formando radicais livres iniciando a polimerização. As resinas fotoativadas apresentam como uma de suas principais vantagens um maior tempo de trabalho. Já as quimicamente ativadas, exigem a manipulação de duas pastas, e isso induz à incorporação de bolhas de ar na massa da resina reduzindo as propriedades mecânicas e aumentando a suscetibilidade à pigmentação.

Uma restauração em resina composta ideal deveria cumprir cinco requisitos básicos: possuir alta resistência ao desgaste, boa adaptação marginal, ser resistente à degradação pela água e outros solventes, apresentar radiopacidade e ser de fácil execução.

O quadro 3 reúne as principais situações clínicas comumente encontradas, associando-se com as principais resinas compostas indicadas para cada caso em relação ao tamanho de suas partículas inorgânicas.

Quadro 3 – Indicação do uso das resinas compostas quanto ao tamanho das partículas

<table>
<thead>
<tr>
<th>Região</th>
<th>Quanto ao tamanho das partículas inorgânicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oclusal dos dentes posteriores</td>
<td>Micro-híbridas, Nanopartículadas, Nanohíbridas, Condensáveis</td>
</tr>
<tr>
<td>Vestibular e cervical dos dentes anteriores</td>
<td>Micro-híbridos, Nanopartículadas, Micropartículadas Nanohíbridas</td>
</tr>
<tr>
<td>Incisal dos dentes anteriores</td>
<td>Microhíbridas, Nanopartículadas, Nanohíbridas</td>
</tr>
<tr>
<td>Regiões profundas de difícil acesso em preparos de Classe II</td>
<td>Resinas Microhíbridas Flow</td>
</tr>
</tbody>
</table>
| Regiões proximais de dentes anteriores e posteriores | **Anteriores:** Microhíbridas, Nanopartículadas, Nanohíbridas
Posteriores: Mesmas anteriores + Microhíbridas Condensáveis |
| Lesões cervicais em dentes anteriores e posteriores | Micropartículas,Nanopartícula das eNanohíbridas |

Visando a melhoria da contração de polimerização, principal causa de falhas das resinas compostas, foi introduzido recentemente no mercado odontológico o compósito restaurador chamado silorano, que é um sistema monomérico híbrido que contém estruturalmente metade de siloxano e oxirano (grupos epóxicos). A estrutura do siloxano promove uma natureza mais hidrófoba ao silorano, reduzindo assim a sorção de água através do meio bucal, melhorando as propriedades físicas e por sua vez tendem a absorver menos corantes provenientes da dieta. Essa baixa sorção de água e solubilidade, faz com que as restaurações de resina composta à base de
silorano mantêm suas propriedades mecânicas por mais tempo. O oxirano tem alta reatividade e menor contração de polimerização que os metacrilatos. E esse é o principal avanço do novo material, por ter a capacidade de minimizar a contração e a tensão que usualmente ocorrem durante a polimerização. Essa baixa contração representa uma vantagem clínica em relação ao selamento marginal reduzindo o risco de microinfiltração14, 15.

As resinas que apresentam silorano possuem biocompatibilidade tão boa ou melhor que os monômeros metacrilatos como o Bis-GMA. Devido a essas propriedades é esperado que essa nova resina composta promova maior longevidade às restaurações diretas com diminuição da recorrência de cárie, porém mais estudos são necessários para a comprovação de seu desempenho clínico15. Esse tipo de resina é representado pela Filtek P90, 3M ESPE.

CONCLUSÃO

A partir da revisão de literatura apresentada, pode-se concluir que atualmente as resinas compostas disponíveis no mercado são adequadas para as mais diversas situações clínicas, estando nas mãos do cirurgião-dentista a escolha correta do material ideal para os diferentes casos, implicando em uma melhor qualidade estética e funcional às restaurações dentárias.

REFERÊNCIAS

Recebido em 19/07/2010
Aprovado em 19/04/2011
<table>
<thead>
<tr>
<th>Tamanho das partículas</th>
<th>Tipo de carga inorgânica</th>
<th>Indicação</th>
<th>Vantagens</th>
<th>Desvantagens</th>
<th>Exemplo de marca comercial/fab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroparticuladas</td>
<td>Quartzo, posteriormente substituida por estrôncio e bário</td>
<td>Em desuso, pois não apresentam resultados clínicos satisfatórios.</td>
<td>No passado, tinham melhores propriedades mecânicas que a resina acrílica</td>
<td>Rugosidade superficial, suscetibilidade ao manchamento</td>
<td>Adaptic (Johnson & Johnson, Concise (3M))</td>
</tr>
<tr>
<td>Microparticuladas</td>
<td>silício</td>
<td>Devem ser utilizadas em regiões em que a estética é primordial e com baixa carga mastigatória</td>
<td>Excelente lisura e brilho superficial</td>
<td>Propriedade mecânica, contração de polimerização, módulo de elasticidade, resistência à tração, viscosidade suscetibilidade à sorção de água</td>
<td>Silux Plus (3M), Durafil (Kulzer), Helio Fill AP (Vigodent)</td>
</tr>
<tr>
<td>Micro-híbridas</td>
<td>silício</td>
<td>Resina de uso universal</td>
<td>Excelentes propriedades mecânicas e lisura superficial</td>
<td></td>
<td>TPH Spectrum (Dentsply), Natural Look (DFL), Master Fill (Biodinâmica), Fill Magic (Vigodent), Suprafill (SWhite), Z100 e Filtek Z250 (3M), Herculite XRV (Kerr), Charisma (Kulzer), Tetric Ceram (Vivadent), Oppaliis (FGM)</td>
</tr>
<tr>
<td>Nanoparticuladas e</td>
<td>silício</td>
<td>Resina de uso universal</td>
<td>Excelentes propriedades mecânicas e lisura superficial, ainda melhor que as microhíbridas</td>
<td>Poucos dados na literatura sobre o desempenho clínico</td>
<td>Filtek Supreme (3M), Concept Advanced (Vigodent)</td>
</tr>
<tr>
<td>Nanohíbridas</td>
<td>silício</td>
<td></td>
<td></td>
<td></td>
<td>Brilliant (Vigodent); Ice (SDI), Tetric N-Ceram (Vivadent), Evolu-X (Dentsply).</td>
</tr>
</tbody>
</table>

Quadro 1 – Resinas compostas de acordo com o tamanho das partículas de carga