Modelo geoestadístico de la distribución espacial de arsénico y plomo en la superficie de depósitos de relaves abandonados en la comuna de Andacollo, región de Coquimbo – Chile

Autores

DOI:

https://doi.org/10.26848/rbgf.v15.2.p974-993

Palavras-chave:

Geoestadística, Contaminación, XRF, Minería, Relaves.

Resumo

La comuna de Andacollo se localiza en la región de Coquimbo al norte de Chile. Posee una superficie de 310 km2, y una demografía de 11.044 habitantes. De acuerdo con el Catastro Nacional de Relaves de 2020 del Servicio Nacional de Geología y Minería, existen en Chile un total de 743 depósitos de relave, de los cuales 105 están ubicados en Andacollo. De acuerdo con lo mencionado anteriormente, según el Ministerio de Minería se definen como un residuo, mezcla de mineral molido con agua y otros compuestos, que quedan como resultado de la extracción de minerales sulfurados en el proceso de flotación. En los relaves visitados durante las campañas a terreno realizadas en 2019 y 2020, se realizaron colectas de muestras de sedimentos, y se pudo evidenciar a través de mediciones realizadas con un equipo XRF portátil, que varias de las muestras colectadas contenían concentraciones de metales pesados sobre la normativa de la Agencia de Protección Ambiental de Estados Unidos. Las fuentes de contaminación, es decir los depósitos de relaves abandonados, se encuentran expuestos a la propagación en el medio ambiente a través de la dinámica de diversos factores físicos. Dada la relevancia de estos fenómenos, es imprescindible contar con un conocimiento preciso de la concentración y distribución de elementos potencialmente perjudiciales para la salud de la población. Por lo anteriormente expuesto, en este estudio se presenta un modelo geoestadístico de la distribución espacial de arsénico y plomo en la superficie de los depósitos de relaves abandonados en Andacollo.

Palabras-claves: geoestadística, contaminación, XRF, minería, relaves.

 

Geostatistical model of the spatial distribution of arsenic and lead on the surface of abandoned tailings in the Andacollo city, Coquimbo region - Chile

 

A B S T R A C T

The commune of Andacollo is located in the Coquimbo region in northern Chile. It has an area of 310 km2 and a population of 11,044 inhabitants. According to the National Tailings Cadastre 2020 of the National Geology and Mining Service, there are a total of 743 tailings in Chile, of which 105 are located in Andacollo. As mentioned above, according to the Ministry of Mining, tailings are defined as a residue, a mixture of ground ore with water and other compounds, left over from the extraction of sulfide minerals in the flotation process. In the tailings visited during the field campaigns conducted in 2019 and 2020, sediment samples were collected, and it was evident through measurements made with portable XRF equipment, that several of the samples collected contained concentrations of heavy metals above the United States Environmental Protection Agency regulations. The sources of contamination, that is abandoned tailings deposits, are exposed to propagation in the environment through the dynamics of various physical factors. Given the relevance of these phenomena, it is essential to have a precise knowledge of the concentration and distribution of elements potentially harmful to the health of the population. Therefore, this study presents a geostatistical model of the spatial distribution of arsenic and lead on the surface of abandoned tailings deposits in Andacollo.

Keywords: geostatistics, contamination, XRF, mining, tailings

Referências

AbdelRahman, M. A., Zakarya, Y. M., Metwaly, M. M., Koubouris, G., 2021. Deciphering Soil Spatial Variability through Geostatistics and Interpolation Techniques. Sustainability, 13(1), 194.

Aelion, C. M., Davis, H. T., Liu, Y., Lawson, A. B., McDermott, S., 2009. Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling. Environmental science & technology, 43(12), 4432-4438.

Alencar da Silva Alves, K. M., Contreras Franco, C. B., Parodi Dávila, M. C. 2021. Modelación de áreas inundables en un sector minero de la cuenca Quebrada el Arrayán – Región de Coquimbo - Chile. Cuadernos Del CURIHAM, 27, 59–68. https://doi.org/10.35305/curiham.v27i.170

Afu, S. M., Isong, I. A., & Awaogu, C. E., 2019. Agricultural potentials of floodplain soils with contrasting parent material in Cross River State, Nigeria. Global Journal of Pure and Applied Sciences, 25(1), 13-22.

Albaladejo, J., Diaz-Pereira, E., & de Vente, J., 2021. Eco-Holistic Soil Conservation to support Land Degradation Neutrality and the Sustainable Development Goals. Catena, 196, 104823.

Al-Mahbashi, A. M., Al-Shamrani, M. A., Abbas, M. F., 2021. Hydromechanical behavior of unsaturated expansive clay under repetitive loading. Journal of Rock Mechanics and Geotechnical Engineering.

Cabello, J., 2021. Gold deposits in Chile. Andean Geology, 48(1), 1-23.

Bhatia, M., Specht, A. J., Ramya, V., Sulaiman, D., Konda, M., Balcom, P., Qureshi, A. 2021. Portable X-ray Fluorescence as a Rapid Determination Tool to Detect Parts per Million Levels of Ni, Zn, As, Se, and Pb in Human Toenails: A South India Case Study. Environmental Science & Technology, 55(19), 13113-13121.

Bonnail, E., Díaz-García, A., Cruces, E., García, A., Borrero-Santiago, A. R. 2022. Coastal uses and contaminant spread in the desert coastal region of Atacama. Chemosphere, 288, 132519.

Caporale, A. G., Adamo, P., Capozzi, F., Langella, G., Terribile, F., Vingiani, S., 2018. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Science of the Total Environment, 643, 516-526.

Cruzado-Tafur, E., Torró, L., Bierla, K., Szpunar, J., Tauler, E., 2021. Heavy metal contents in soils and native flora inventory at mining environmental liabilities in the Peruvian Andes. Journal of South American Earth Sciences, 106, 103107.

Fang, H., 2021. Impacts of rainfall and soil conservation measures on soil, SOC, and TN losses on slopes in the black soil region, northeastern China. Ecological Indicators, 129, 108016.

De Castro Paes, É., Veloso, G. V., da Fonseca, A. A., Fernandes Filho, E. I., Ferreira, M. P., Soares, E. M. B. 2022. Predictive modeling of contents of potentially toxic elements using morphometric data, proximal sensing, and chemical and physical properties of soils under mining influence. Science of The Total Environment, 152972.

Goff, K., Schaetzl, R. J., Chakraborty, S., Weindorf, D. C., Kasmerchak, C., & Bettis III, E. A., 2020. Impact of sample preparation methods for characterizing the geochemistry of soils and sediments by portable X‐ray fluorescence. Soil Science Society of America Journal, 84(1), 131-143.

Gribov, A., Krivoruchko, K., 2020. Empirical Bayesian kriging implementation and usage. Science of The Total Environment, 137290.

MMA. MINISTERIO DEL MEDIO AMBIENTE, 2012. Guía Metodológica para la Gestión de Suelos con Potencial Presencia de Contaminantes.

Hadaro, M., Ayele, T., Parshotam Datt, S., Teshome, R., 2021. Soil Properties as Affected by Soil Conservation Practices and Soil Depths in Uwite Watershed, Hadero Tunto District, Southern Ethiopia. Applied and Environmental Soil Science, 2021.

Hancock, G. R., Willgoose, G. R. 2021. Predicting gully erosion using landform evolution models: Insights from mining landforms. Earth Surface Processes and Landforms, 46(15), 3271-3290.

Hu, B., Chen, S., Hu, J., Xia, F., Xu, J., Li, Y., Shi, Z., 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS One, 12(2), e0172438.

Itabashi, T., Li, J., Hashimoto, Y., Ueshima, M., Sakanakura, H., Yasutaka, T., Hosomi, M., 2019. Speciation and fractionation of soil arsenic from natural and anthropogenic sources: chemical extraction, scanning electron microscopy, and Micro-XRF/XAFS investigation. Environmental science & technology, 53(24), 14186-14193.

Jam, A. S., Mosaffaie, J., Tabatabaei, M. R., 2021. Assessment of comprehensiveness of soil conservation measures using the DPSIR framework. Environmental Monitoring and Assessment, 193(1), 1-19.

John, K., Afu, S. M., Isong, I. A., Aki, E. E., Kebonye, N. M., Ayito, E. O., Penížek, V., 2021. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. International Journal of Environmental Science and Technology, 1-16.

Kostaschuk, R., Aden, A., Desloges, J. R., 2021. Erosion, deposition and contamination by high‐magnitude subaqueous debris flows and turbidity currents: Insights from the failure of a tailings dam near Quesnel Lake, British Columbia. Sedimentology.

Krivoruchko, K., Gribov, A., 2019. Evaluation of empirical Bayesian kriging. Spatial Statistics, 32, 100368.

Lam, E. J., Montofré, Í. L., Ramírez, Y., 2021. Mine tailings phytoremediation in arid and semiarid environments. In Phytorestoration of Abandoned Mining and Oil Drilling Sites (pp. 115-166). Elsevier.

Li, F., Zhang, X., Lu, A., Xu, L., Ren, D., You, T. 2022. Estimation of metal elements content in soil using x-ray fluorescence based on multilayer perceptron. Environmental monitoring and assessment, 194(2), 1-12.

Liu, K., Cai, H., Jing, X., Chen, Y., Li, L., Wu, S., Wang, W., 2021. Study on Hydraulic Incipient Motion Model of Reinforced Tailings. Water, 13(15), 2033.

Li, Z., Tao, H., Zhao, D., Li, H. 2022. Three-dimensional empirical Bayesian kriging for soil PAHs interpolation considering the vertical soil lithology. CATENA, 212, 106098.

López-Berenguer, G., Pérez-García, J. M., García-Fernández, A. J., Martínez-López, E. 2021. High levels of heavy metals detected in feathers of an avian scavenger warn of a high pollution risk in the Atacama Desert (Chile). Archives of environmental contamination and toxicology, 81(2), 227-235.

Luo, C., Routh, J., Luo, D., Wei, L., Liu, Y. 2021. Arsenic in the Pearl River Delta and its related waterbody, South China: occurrence and sources, a review. Geoscience Letters, 8(1), 1-13.

Marques, R. F. D. P. V., da Silva, A. M., dos Santos Rodrigues, L., Mendes, L. F., de Oliveira, A. S., 2021. Impactos da disposição de resíduos sólidos urbanos no solo em municípios de Minas Gerais–Brasil. Revista Brasileira de Geografia Física, 14(03), 1382-1392.

Morita, A. K., Ibelli-Bianco, C., Anache, J. A., Coutinho, J. V., Pelinson, N. S., Nobrega, J., ... Wendland, E., 2021. Pollution threat to water and soil quality by dumpsites and non-sanitary landfills in Brazil: A review. Waste Management, 131, 163-176.

Nath, H., Rafizul, I. M. 2022. Spatial Variability of Metal Elements in Soils of a Waste Disposal Site in Khulna: A Geostatistical Study. In Advances in Civil Engineering (pp. 25-36). Springer, Singapore.

Pacheco, P. R., Parodi, M. C., Mera, E. M., Salini, G. A., 2020. Variables meteorológicas y niveles de concentración de material particulado de 10 μm en Andacollo, Chile: un estudio de dispersión y entropías. Información tecnológica, 31(6), 171-182.

Quispe-Jofré, A., Philimon, P. P., Alfaro-Lira, S., 2021. Socio-environmental conflict over abandoned mining waste in Copaquilla, Chile. Environmental Science and Pollution Research, 1-19.

Rima, U. S., Beier, N. A. 2022. Effects of seasonal weathering on dewatering and strength of an oil sands tailings deposit. Canadian Geotechnical Journal, 59(3), 447-457.

Rodríguez-Zapata, M. A., Ruiz-Agudelo, C. A. 2021. Environmental liabilities in Colombia: A critical review of current status and challenges for a megadiverse country. Environmental Challenges, 5, 100377.

SERNAGEOMIN. SERVICIO NACIONAL DE GEOLOGÍA Y MINERÍA, 2020. Catastro Nacional Depósito de relaves. Disponible desde internet en: https://www.sernageomin.cl/deposito-de-relaves/ (con acceso el 13/06/2021).

Sharma, A., Guinness, J., Muyskens, A., Polizzotto, M. L., Fuentes, M., Hesterberg, D. 2022. Spatial statistical modeling of arsenic accumulation in microsites of diverse soils. Geoderma, 411, 115697.

Shokr, M. S., Abdellatif, M., El Baroudy, A. A., Elnashar, A., Ali, E. F., Belal, A. A., Kheir, A., 2021. Development of a spatial model for soil quality assessment under arid and semi-arid conditions. Sustainability, 13(5), 2893.

Sun, Y., Gu, X., Xu, X., 2021. Experimental Study on Hydraulic Erosion Characteristics of Ecological Slope of Tailings Reservoir under Rainfall. KSCE Journal of Civil Engineering, 1-11.

Tibane, L. V., Mamba, D. 2022. Dataset on enrichment of selected trace metals in the soil from designated abandoned historical gold mine solid waste dump sites near residential areas, Witwatersrand Basin, South Africa. Data in Brief, 41, 107895.

Urbina, M. A., Guerrero, P. C., Jerez, V., Lisón, F., Luna-Jorquera, G., Matus-Olivares, C., Gomez-Uchida, D. 2021. Extractivist policies hurt Chile’s ecosystems. Science, 373(6560), 1208-1209.

Varghese, T. I., Nageshrao, P. T., Raghavendramurthy, N., Ramasamy, N., 2018. Sediment geochemistry of coastal environments, southern Kerala, India: implication for provenance. Arabian Journal of Geosciences, 11(3), 1-14.

Wen, Q., Yang, X., Yan, X., Yang, L. 2022. Evaluation of arsenic mineralogy and geochemistry in gold mine-impacted matrices: Speciation, transformation, and potential associated risks. Journal of Environmental Management, 308, 114619.

Yan, P., Peng, H., Yan, L., Lin, K., 2019. Spatial variability of soil physical properties based on GIS and geo-statistical methods in the red beds of the Nanxiong Basin, China. Pol. J. Environ. Stud, 28, 2961-2972.

Zamarreño, R., Cabana, R., Vergara, K., Cortez, S., 2020. Desplazamiento de elementos metálicos en el estero El Culebrón, por la presencia de un relave minero abandonado, Coquimbo-Chile. Revista UDCA Actualidad & Divulgación Científica, 23(2).

Publicado

2022-04-21

Como Citar

Alencar da Silva Allves, K. M., Parodi Dávila, M. C., Peñaloza, A. S., Zimmermann, E., & Chacón, J. (2022). Modelo geoestadístico de la distribución espacial de arsénico y plomo en la superficie de depósitos de relaves abandonados en la comuna de Andacollo, región de Coquimbo – Chile. Revista Brasileira De Geografia Física, 15(2), 974–993. https://doi.org/10.26848/rbgf.v15.2.p974-993