
99 

M.P. Dantas et al./ Journal of Hyperspectral Remote Sensing 6 (2016) 99-107 

OPEN 

JOURNAL 

SYSTEMS 
ISSN:2237-2202 

 

Available on line at Directory of Open Access Journals 

 
Journal of Hyperspectral Remote Sensing v.6, n.2 (2016) 99-107 

DOI: 10.5935/2237-2202.20160009 

 

Journal of 

Hyperspectral 

Remote Sensing 

www.ufpe.br/jhrs 

 

Temporal analysis of rainfall and vegetation index using satellite images in 

Pernambuco State 
 

Milena P. Dantas
*
, Célia C. Braga

**
, Edicarlos P. Sousa

***
, Leonardo F. Ponciano Barbieri

****
, Rafaella 

de A. Áries Vilar
***** 

 

*
 University Federal of Campina Grande (UFCG), Departament of Atmosferic Science, Av. Aprígio Veloso, 822. Bairro 

Universitário, Campina Grande-PB (Brasil). Fone: 558321011000. Post-graduate studies in meteorology. E-mail: 

milena_hds@hotmail.com (Corresponding author) 
**

University Federal of Campina Grande (UFCG), Department of Atmosferic Science. Meteorology Professor.  E-mail: 

celiadca@hotmail.com 
***

University Federal of Campina Grande (UFCG), Department of Atmosferic Science. Post-graduate studies in meteorology.  

E-mail: edicarlos.p.sousa@gmail.com 
****

University Federal of Campina Grande (UFCG), Department of Atmosferic Science. Post-graduate studies in meteorology.  

E-mail: poncianolf@yahoo.com.br 
***** 

University Federal of Campina Grande (UFCG), Department of Atmosferic Science. Post-graduate studies in meteorology.  

E-mail: rafaella.vilar@hotmail.com 
 

Received 28 January 2016; accepted 20 April 2016 
 

Abstract 

 

The development of this work aimed, analyze and interpret the temporal standards   of precipitation and 

NDVI in the Pernambuco state (Brazil). We used monthly average data of rainfall and NDVI obtained by 

Terra/MODIS satellite image, with spatial resolution of 1km, for the period from 2003 to 2013. We 

applied the Principal Components Factorial Analysis method to determine the variability seasonal 

standard variables. The results showed that the technique applied to the temporal analysis of precipitation 

explained 84.61% (CPs) of the data variance, and to NDVI the temporal analysis explained 90.21% (3 

CPs). Altogether, we observed that the vegetation index is proportional to the amount of rain of the region 

and that the vegetation takes a while after the rainfall to develop. 

 

Keywords: NDVI, MODIS, rainfall.

 

1. Introduction 

 

Pernambuco is located in east-central 

Northeast of Brazil, dependent on weather 

conditions the quantity and distribution of 

rainfall. Across the state, rainfall decrease in east-

west direction and, to a lesser extent, in the south-

north direction. So there are three climate 

variations in Pernambuco: prevailing humid 

tropical climate in the coastal and forest zone 

where the rainfall varies between 700 and 2000 

mm/year, sub-humid tropical climate that prevails 

in the arid zone, with rainfall volumes between 

600 and 1000 mm/year and, finally, semi-arid, 

predominantly tropical climate in the hinterland 

and San Francisco, corresponding to 70% of 

Pernambuco territory that has a rainfall average 

of 600 mm/year. The annual average 

temperatures recorded for the territory range from 

26 °C to 31 °C (ATLAS PERNAMBUCO, 2003). 

The variability of precipitation and the 

temperature state is related to topography and 

vegetation and are also influenced by weather 

systems that interact with each other, give the 

characteristics peculiar state. The coastal 

vegetation of Pernambuco shows that mangroves 

are found in the areas in which they occur contact 

between sea water and rivers. The plants that 
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inhabit mangroves have adapted to overcome the 

adverse conditions; the forests are predominantly 

represented by large trees, evergreens, such as 

mahogany and sucupira. In agreste, hinterland 

and San Francisco region, the predominant 

vegetation is the caatinga due to the dry climate 

of the region, and the vegetation denser agreste 

and reaching a larger size. The swamps of 

altitude, located within the Caatinga area, are 

disjunctions of coastal forest, occupying the 

upper levels of the hills and slopes to windward 

(ALMANAQUE ABRIL, 2012). Precipitation is 

a major component climate and its variability 

throughout the year directly affects the 

composition of the vegetation in a given region 

(Lexer et al., 2002). With the advancement of 

technology, observation of vegetation condition 

has been made through high-resolution remote 

sensors which are able to identify, monitor and 

map areas of vegetation across the globe. 

According to Huete et al. (2002), vegetation 

indices are set to designate the properties of 

vegetation and provide spatial comparisons and 

reliable time the earth's photosynthetic activity 

and changes in canopy structure, and allows the 

monitoring of seasonal variation, interannual 

phenological and biophysical parameters of 

vegetation long term. 

From the spectral reflectances of the 

visible channel (VIS) and near infrared (IR) gives 

the Vegetation Index Normalized Difference 

(NDVI) which is an indicator of the amount of 

green biomass degree of growth and development 

of plants (Jense, 2009).  From the combination of 

these reflectance spectral bands is possible to get 

contrast in relation to the different targets of the 

surface and to map the vegetation of a particular 

area or region. The vegetation behavioral changes 

are gradual over time and result in a gradual 

change in spectral reflectance of the vegetation, 

enabling growth detect possible problems and 

distinguish different types of vegetation. 

Researchers around the world has been 

developing studies to better understand the 

relationships between vegetation and 

precipitation using remote sensing techniques. 

Srivastava et al. (1997) used the remote data to 

study the relationship between NDVI and total 

seasonal precipitation and sweating in the state of 

Karnataka (India), Nicholson and Farrar (1994) 

showed in their studies for Africa, that the 

variation of NDVI is more related to soil water 

storage capacity than the own rainfall. Braga et 

al. (2003) applied the Factor Analysis Principal 

Components in the NDVI temporal series to 

determine the response time of vegetation to 

rainfall in northeastern Brazil. Wang et al. (2010) 

used NDVI data from the MODIS sensor and the 

Loess Plateau rainfall data in China and applied 

ACP to determine the development of the 

vegetation cover. The results show that 

precipitation has a dynamic similar to the spatial 

pattern of NDVI. Sousa (2014) used monthly 

NDVI data from NOAA and MODIS satellites in 

the 2010s to find a relationship with rainfall in the 

state of Paraiba. The results showed that 

correlations are higher in drier months than in the 

rainy season.  

Studies show a strong spatial or temporal 

relationship between climate and NDVI in 

seasonal and interannual time scales for a given 

period (Wang et al., 2001; Chen and Pan, 2002; Ji 

and Peters, 2003; Zhang, 2003; Piao et al., 2004; 

Mennis, 2006). Wang et al. (2003) examined 

temporal responses of NDVI to precipitation and 

temperature over a period of nine years (1989-

1997) in Kansas. The NDVI images were 

obtained by NOAA/AVHRR. The results showed 

that there was a weak negative correlation 

between temperature and NDVI. The relationship 

between precipitation and NDVI is strong and 

predictable when viewed in the appropriate 

spatial scale. In this study was used monthly data 

from NDVI and rainfall for the period 2003 to 

2013. Given the volume of data to be handled, it 

was decided to use a statistical technique that is 

able to reduce the initial set of NDVI data 

obtained by sensors with less loss of information 

possible. It has used the method of Factor 

Analysis Principal Components (PCA) 

(Richaman, 1986; Wilks, 2006). This technique 

was introduced in meteorology and climate 

research initially Lorenz (1956) which called the 

empirical orthogonal function. It has since been 

successfully employed by researchers worldwide 

(Gutman and Ignatov, 1998; Braga, 2000; Braga 

et al., 2003; Amanajás and Braga, 2012). 

In this context, the work presented, aimed 

to improve previous studies for the state of 

Pernambuco, using statistical techniques of factor 

analysis Principal Component because this 

technique allows get and set the temporal patterns 

of variables (NDVI and rainfall) as well as 

spatially identify regions of the same behavior, 
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associating them with weather systems that 

operated in the area during the study period. 

 

2. Materials and methods 

 

2.1 Study area   

Pernambuco is among 7°15'45" and 

9°28'18" south latitude and between 34°48'35" 

and 41°19'54" west longitude, limiting with the 

states of Paraíba, Ceará, Piauí, Bahia, Alagoas 

and east with the Atlantic Ocean. It covers an 

area of 98,149,119 km², distributed in 185 

municipalities, with the estimated population of 

9,277,727 inhabitants (IBGE, 2014). Figures 1 

and 2 show, respectively, the location of 

Pernambuco state on the map of Brazil and the 

state of vegetation. 

 

 

Figure 1 – Pernambuco state the location on the 

map of Brazil. Headlines appear the mesoregions. 

 

 

Figure 2 – Map of Pernambuco types of 
vegetation. 

 

2.2 Rainfall Data 

Were used in 81 weather stations rainfall 

data distributed throughout the state of 

Pernambuco from 2003 to 2013, obtained from 

Pernambuco Water and Climate Agency website - 

PWCA. The relief of Pernambuco (Figure 3) is 

moderate, much of the state is below 600m. It 

consists of three types of relief:   

Coastal Lowlands, Plateau of Borborema 

and Country Depression. In the coastal state, the 

relief is almost all the average sea level. The 

Coastal lowlands, is nothing more than a coastal 

plain of sedimentary origin and altitude between 

0 and 10m, with increasing altitude as moves 

away from the coast. Between the Zona da Mata 

and Agreste, is the Borborema Plateau, with an 

average altitude of 600m, from 1000m at the 

highest points. It is observed that the altitude 

decreases the Hinterland to San Francisco, 

forming an area of relative depression (compared 

to the Plateau of Borborema). The Sierra Araripe, 

which is on the border with Ceará, has an altitude 

of about 800m.  

 

 

Figure 3 – Relief (meters) from the state of 

Pernambuco (Miranda, 2005). 

 

The rainfall from one location can be 

enhanced or reduced according to the terrain 

characteristics. Figure 4 shows the total annual 

rainfall average for the period 2003-2013 in the 

state of Pernambuco. The highest rates are seen in 

the state of coastline, with values greater than 

1800mm. While, the lowest values are observed 

in the San Francisco region and in the hinterland, 

with values less than 600 mm. 

 

 

Figure 4 – Spatial distribution of total average 

annual precipitation (mm) in the state of 

Pernambuco, period 2003-2013. 

 

2.3 NDVI data from Terra/MODIS 

NDVI is a model resulting from the 

combination of reflectance levels in satellite 



M.P. Dantas et al./ Journal of Hyperspectral Remote Sensing 6 (2016) 99-107 

102 
 

images, the near infrared (0,725 - 1,10 μm) and 

the visible (0,58 - 0,68 μm). Soon, the NDVI is 

determined by the following equation: 

 

 

 (1) 

 

 

NDVI values range between -1 and 1, 

where areas with vegetation cover are linked to 

positive values of vegetation index. Materials that 

reflect more in the portion of red compared to the 

near infrared (clouds, water and snow) have 

negative NDVI. Bare soils and rocks reflect both 

visible and near infrared almost the same 

intensity, so that your NDVI reaches close to zero 

(Rizzi, 2004). 

The MODIS NDVI product, specifically 

MOD13A3 product, with spatial resolution of 1 

km, for the period 2003-2013, was acquired in the 

REVERB / NASA website at 

http://reverb.echo.nasa.gov/. This product is in 

the form HDF (Hierarchical Data Format) and is 

converted to the format .IMG.  

Products are arranged in so-called mosaic 

“tiles”. The state of Pernambuco is located in tiles 

h13v09 e h14v09 (Figure 5). 

Table 1 shows the NDVI product with the 

correction factor to be applied to convert the data. 

For this, the product multiplied by the correction 

factor MOD13A3. Moreover, the tiles were 

pooled and images were placed on the projection 

lat/lon WGS84 with the aid of software designed 

for extracting information from digital images. 

Thus, the images processed, extracted NDVI 

value for each pixel. 

 

 
Figure 5 – Tiles MODIS sensor, especially the 

tiles where is the state of Pernambuco. 

 

 

Table 1- Product MODIS and specifications.  
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Source: LP DAAC (2012) 

 

2.4 Factor Analysis in Principal Components 

The Principal Component Analysis (PCA) 

was developed by Pearson (1901). It is defined as 

a technique to reduce the number of variables of 

the data set, identifying the default correlation or 

covariance between them, and generating a 

smaller number of new variables.  

For PCA, it takes a matrix of original data 

X p variables for n individuals in order to obtain a 

variance and covariance matrix S by: 

 

 

   (2) 

 

Where X is the array with values centered, 

Xt the transposed matrix n is the number of 

individuals. The R correlation matrix will equal 

the array of variance and covariance, then: 

 

 

(3) 

 

The R matrix is a symmetric matrix and 

positive correlation dimension (pxp) 

Diagonalizable by an orthogonal matrix A, called 

base change eigenvectors, thus: 

 

 (4) 

 

 

Where D is the diagonal matrix and A
-1

 is 

the inverse of the matrix A. As the base change 

matrix for a new reference system consisting of 

the eigenvectors of R, the principal components 

(PC) U1, U2, ... , Up, are obtained by linear 

combinations of eigenvectors of the transpose 
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(A
t
) and the observation matrix (X) standard, as 

described below: 

 

 (5) 

 

To estimate Xi n-th local values, is used: 

 

 

 

(6) 

 

Where aij is the set of X of eigenvalues in 

descending order of the most significant 

eigenvalues of ak in A. 

The percentage of variance explained of 

the eigenvalues in descending order is given by: 

 

 

(7) 

 

In this study the rotated eigenvectors was 

employed (Varimax) by presenting better 

explanatory power of the factors. The correlation 

between the i-th original variable and the i-th 

main component is: 

 

 
 (8) 

  

 

Being, aij j-th element of the i-th 

eigenvector and λi the i-th eigenvalue. For this 

analysis we used a suitable statistical software. 

 

3. Results and discussion 

 

3.1 Temporal analysis of precipitation 

Table 2 contains the percentage of variance 

explained for the first two common temporal 

rotated factors that explain 84.61% of the total 

variance of the series and truncated second 

criterion Kaiser (Mingoti, 2005).  

Figure 6 shows the first two rotated factors 

of rainfall. The first time common factor of the 

precipitation that explained 51.26% of the total 

variance of the data, shows high correlations 

above 0.7 in the months from April to October. 

The spatial distribution associated with this factor 

(Figure 7a) shows that the largest contribution 

(scores) greater than 1.5 range from the Recife 

metropolitan area to the south of Pernambuco 

Forest Zone. Negative values lower than -1 are 

observed in the State of the Wild. It is observed in 

the arid zone marked a transition zone that 

separates the rainfall regime of the west and east 

of the state. Possibly the rains associated with this 

pattern are the result of the Eastern systems 

operating in Pernambuco those months. 

According to Braga (2000) the rainfall totals 

more influenced by easterly disturbances occur in 

the months of May and June. 

 

Table 2 - Sequence of eigenvalues and the 

contribution (%) to the total variance of the 

rotated monthly average data of rainfall in the 

state of Pernambuco. 
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Factor 2 (Figure 6), which explains 

33.36% of the total variance of the series of 

rainfall, has high correlations above 0.80 in the 

months from December to March. Analyzing the 

spatial pattern of the second factor (Figure 7b), 

contributions are observed above 1 in the North 

Coast and Hinterland (Sierra Araripe). Smaller 

contributions are observed in Pernambuco 

hinterland, and to a lesser extent, in the central 

region in the valley of San Francisco and a 

portion of the Zona da Mata and Agreste of the 

state. This second factor shows the rains from the 

ITCZ and VCAS that predominate in the region 

in the months of summer and fall. 

 According to Gan and Kousky (1986) 

observed that the VCAS in tropical latitudes are 

formed in the Atlantic Ocean, between the 

months of November and March, most often 

between the months of January and February. 
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Already Uvo (1989) who made a very detailed 

study of the ITCZ in the Pernambuco region that 

receives the influence of the ITCZ is the 

Hinterland. In this area, the rainy season is from 

January to June, and features maximum amounts 

of rainfall in March and April, months in which 

the ITCZ acts more intensely (Melo, 1997). 

 

 

Figure 6 – Rotated factorial loads (correlations) 

for the two common factors of rainfall that 

explain 84.61% of the total variance (51.26% + 

33.36%) in the state of Pernambuco. 

 

 

Figure 7a – Spatial pattern to the first common 

factor (scores) of precipitation in Pernambuco 

 

Figure 7b – Spatial pattern to the second common 

factor (scores) of precipitation in Pernambuco. 

3.2 Temporal Analysis of NDVI 

 

In Table 3, the explained variance is 

observed, in percent, for the first three common 

temporal rotated factors that explain 90.21% of 

the total variance of the series and cut second 

criterion Kaiser. 

Following are analyzed and discussed the 

results of the application of the PCA for the 

NDVI temporal series for the state of 

Pernambuco. The first factor that explains 

57.26% of the total variance of the series, 

presents significant correlation (>0.8) in the 

months from May to December (Figure 8). The 

spatial distribution associated with this common 

factor presents contributions in excess of 1.5 in 

the Coast, the Jungle Zone and small nuclei in 

Agreste (swamp altitude). From 37.0° longitude 

contributions descrescem toward the interior of 

the state, with less than -1.5 values in the extreme 

southwest (Figure 9a). The vegetation response in 

the east is associated to the type of vegetation 

(irrigated agriculture and Atlantic Forest), as well 

as the performance of east systems.  

 

Table 3 - Sequence of the eigenvalues and the 

contribution (%) to the total variance of the 

rotated monthly average of NDVI data in the state 

of Pernambuco. 
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The second common factor explains 

22.48% of the total variance of NDVI data and 

has high correlation greater than 0.8 in the 

months February to April (Figure 8). The pattern 

of this factor shows high contributions greater 

than 2 in the central-northern region of the Wild 

in isolated nuclei in the Hinterland, around 37 ° 

W and in the southern coast (Figure 9b). In the 

other regions of the state the negative 

contributions are less than -0.5. 

Furthermore, the third common factor 

explains 10.46% of NDVI data and has the largest 

positive correlation only 0.8 in January (Figure 

8). The spatial configuration of this factor (Figure 
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9c) shows the greatest contributions of the NDVI, 

greater than 1.5, in southeastern coast and the 

Forest Zone, and southwest of the state. This 

factor may be associated with VCAS that operate 

mainly in the southwest and even the breeze 

systems in the east. In the other regions, the 

contributions are less than -1.0, suggesting the 

driest region this month. 

Regarding the response of vegetation to the 

occurrence of rain, Barbosa (1998) noted that the 

best correlation was found between total 

precipitation of two consecutive months with the 

NDVI of these last two months. Braga et al. 

(2003) observed that the vegetation of savanna 

reaches maximum force value in just a month 

after large volumes of rain. 

 

 

 

 

Figure 8 – Rotated factorial loads (correlations) 

for the three common factors of NDVI that 

explain 90.21% of the total variance (57.26% + 

22.48% + 10.46%) in the state of Pernambuco. 

 

 

Figure 9a – Spatial pattern to the first common 

factor (scores) of NDVI in Pernambuco. 

 

 
Figure 9b – Spatial pattern to the second common 

factor (scores) of NDVI in Pernambuco. 

 
Figure 9c – Spatial pattern for the third common 

factor (scores) of NDVI in Pernambuco. 

 

4. Conclusions 

 

The first monthly common factor in these 

11 years studied, showed high correlations 

rainfall occurred from April to October in the 

eastern part of the state, while for the NDVI were 

higher from May to December in the same region. 

This shows that after the rains, vegetation takes a 

while to develop. In the first factor, the rains are 

associated with the systems East and in the case 

of the second common factor, high rainfall 

correlations were from November to March, 

while the NDVI was higher from February to 

April and is associated with the ITCZ and VCAS. 

The results from the application of 

principal component analysis to the time of 

rainfall and NDVI series allowed to define spatial 

patterns and temporal correlations of the 

variables, identifying the behavior of the same 

and the performance of meteorological 

phenomena on different time scales, adding some 

studies conducted in the state.  
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