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Abstract 
 

The spectrally active components of the soil allow the realization of integrative analyzes of soil aspects such as their 

classification. The purpose of this study was to evaluate the separation of soil classes from spectral reflectance data using 

principal components analysis (PCA). The study was carried out in the Aiuaba Experimental Basin located in the municipality 

of Aiuaba, Ceará, Brazil. Soil samples were collected in Ustalfs, Ustults, and Ustorthents profiles. The samples were submitted 

to spectral analysis by a spectroradiometer and, subsequently, to PCA. Principal components were used to identify which of 

them contribute more significantly to the separation of the soil classes analyzed, based on their relationship with the soil 

attributes using a two-dimensional graphical analysis. From the examination of spectral behavior data of the different soil 

classes, the use of PCA allowed the separation of the classes Ustorthents, Ustalfs, and Ustults from each other. 
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1. Introduction 

 

Due to the exponential growth in data 
availability in several study areas, a new age of 

information processing, the big data, has started, with 

which new needs are raised, such as the processing 

capacity of these data. Facing this, there were 
proposed processing techniques and algorithms that 

aim to meet this need, and that can return valuable 

information from this data density (Jollife and 
Cadima, 2016; Wu et al., 2018). 

In the field of soil science, the great variability 

of soils and its attributes have always involved large 

databases and, with the advent of new technologies 
that make it easier to acquire, this characteristic is 

more and more prominent. Studies that depart from 

surveys using orbital (Mendonça-Santos et al., 2010; 
Liddicoat et al., 2015; Laborczi et al., 2016; 

Kalambukattu et al., 2018) or proximal sensors, such 

as those of Cheng et al. (2019) that estimated the 
concentration of heavy metals in the soil correlating 

the spectra of these elements with their reflectance, 

or Curcio et al. (2013) that predicted textural classes 

from soil reflectance data, produce dense databases 
that require large processing capacities. 

Another soil aspect dependent on numerous 

variables is its classification from a pedogenic point 
of view. This has been the subject of several studies 

using proximal sensors, such as done by Xie and Li 

(2018), that aimed to predict soil classes through 

their spectral characteristics. The fact that the 

spectrally active components of the soil in the visible 
and near infrared (Vis-NIR) regions are mainly iron 

oxides, organic matter, clay minerals, carbonates and 

water (Ben-Dor, 2002; Stenberg et al., 2010) has 

allowed the use of spectrometry in integrative 
analyzes (Awiti et al., 2008), from soil quality 

(Askari et al., 2015) to its classification (Rossel and 

Webster, 2011; Ogen et al., 2017). 
However, the problem with the high density of 

the databases generated by analyzes performed with 

proximal sensors still persists. As one of the 

alternatives, the principal components analysis (PCA) 
transforms high density datasets into components 

representing the initial data, having a smaller size and 

preserving the data variability as much as possible 
(Jollife and Cadima, 2016; Wu et al., 2018). 

The use of PCA in geoenvironmental studies, 

with emphasis on soil science, has enabled studies 
such as the one done by Nketia et al. (2019), that 

used PCA to develop a methodology for selecting 

sampling points that were representative of soil 

properties of interest and soil-landscape interactions. 
Another example of the use of PCA, was the 

selection of variables to construct a model for 

predicting soil physical properties developed by Levi 
and Rasmussen (2014) and its use to evaluate soil 
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contamination levels by heavy metal near copper 
mines (Zhiyuan et al., 2011). 

The possibility of using PCA, regression trees, 

machine learning, neural networks, among other 

statistical and computational techniques associated 
with new soil evaluation methodologies such as 

reflectance spectroscopy (Demattê and Terra, 2014; 

Rossel et al., 2016; Moura-Bueno et al., 2019), open 
possibilities for the characterization and assessment 

of soils and their formation environments. 

In this way, the purpose of this study was to 

evaluate the separation of soil classes from spectral 
reflectance data using principal components analysis. 

2. Materials and Methods 

 

The study was conducted in the Aiuaba 

Experimental Basin (BEA), located in the 

municipality of Aiuaba, in the State of Ceará, 
northeast region of Brazil. BEA is inserted in the 

Upper Jaguaribe Basin, and is currently considered 

the largest Federal reserve of the Caatinga biome. 
The basin area has approximately 12 km² (Figure 1) 

and it is fully inserted in an ecological station, which 

means that it is a preserved area. 

 

 

 
Figure 1 - Aiuaba Experimental Basin (BEA), its location in the State of Ceará, and in the Upper Jaguaribe Basin, 
with the distribution of soil classes and basin hydrography. 

 

The climate of the region is defined as 'Bs' 
according to the Köppen’s classification, presenting 

average precipitation of 560 mm year-1 and 

evaporation of 2,500 mm year-1 by class A tank 
(Araújo and González Piedra, 2009). 

Based on the assessment of the environmental 

dynamics in this basin, the area was divided into 

three associations between soil and vegetation 
(ASVs) that were defined as homogeneous units for 

studies of the environmental variables. Pinheiro et al. 

(2016) and Costa et al. (2013) classified the ASVs 
based on their predominance of soil and vegetation, 

which are presented in Table 1. 

 
Table 1 - Study area description. 

 

ASV Predominant vegetation Soil class Area in BEA (%) 

ASV1 Catingueira (Caesalpinia pyramidalis Tul) Ustalfs (TCo) 20 

ASV2 Angelim (Piptadenia obliqua) Ustults (PVA) 34 

ASV3 Jurema-preta (Mimosa tenuiflora (Willd.) Poir) Ustorthents (RL) 46 

Source: Pinheiro et al. (2016). 
 

Four soil samples were collected in 

characteristic profiles at each ASV. The samples 
were collected at a soil depth of 0-0.2 m. 

Subsequently, they were stored and identified for 

further analysis. Analyzes were carried out to 
determine the texture (pipette method) and organic 
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matter (OM, wet-oxidation with potassium 
dichromate) content according to the methodology 

presented in Teixeira et al. (2017). The analyzes were 

carried out at the Soil Laboratory of the Embrapa 

Agroindústria Tropical (Fortaleza, Ceará State, 
Brazil). 

In order to obtain the soil reflectance data 

using a proximal sensor, the FieldSpec 3 sensor was 
used according to the methodology of Romero et al. 

(2018). This sensor has a resolution of 1 nm (350-

1100 nm) and 2 nm (1000-2200 nm). The system 

geometry was based on the perpendicular positioning 
of the sensor in relation to the sample, maintaining a 

distance of 6 cm. The light source was positioned at 

50 cm from the sample, forming a 45° angle with the 
zenith. A white spectral plate was used as the spectral 

standard reference. The reflectance values were 

obtained from the average of three readings for each 
sample. 

After obtaining the data, they were submitted 

to principal component analysis (PCA), using the 

software R (R Core Team, 2019) and the 
FactorMaineR package scripts provided by Lê et al. 

(2008), in order to identify the most important 

components and the separation of the soil classes. 
This technique was used to evaluate the importance 

of the 2,500 reflectance bands analyzed by the 

spectroradiometer and identify which of them 
contribute more significantly to the separation of the 

soil classes analyzed, based on their relationship with 

the soil attributes. 

To perform the selection of the number of CPs 
were considered those with eigenvalue higher than 

the unit. This criterion is based on the fact that any 

component must explain a variance greater than that 

presented by a single standardized variable (band), as 
explain Hair et al. (2009). 

 

3. Results and discussion 

 

The results of the textural class and OM 

analysis can be observed in Table 2. 

The highest OM contents were observed in the 
Ustults, while the lowest were in the Ustorthents. A 

highlight is given to the silt content of Ustalfs, which 

may be associated with its poor pedogenetic 
development. The highest sand contents, as expected, 

were observed in the Ustorthents.  

Organic matter is characterized in the range of 
750-870 nm, its chromophore characteristic is mainly 

given by the combination C-H, N-H, O-H and the 

vibration of these elements (Xie and Li, 2018). 

Moura-Bueno et al. (2019), using spectral 
characteristics modeling to predict soil organic 

carbon (SOC), observed that bands between 400-800 

nm were responsible for explaining the greater 
variability of this soil attribute. This range has also 

been observed in studies developed by Vasques et al. 

(2008), Rossel et al. (2016) e Jiang et al. (2017), and 
has been described as an important region in spectral 

curves associated with land use, soil class and SOC 

content (Moura-Bueno et al., 2019). 

 
Table 2 - Texture and organic matter, and their deviations, for the three soil classes analyzed. 

 

ASV Soil class 

Organic 

Matter 

(kg kg
-1

) 

Texture (kg kg
-1

) 

Fine 

sand 
Coarse sand Silt Clay 

ASV1 Ustalfs 
0.015 

(±0.001) 
0.191 (±0.003) 

0.170 

(±0.009) 

0.455 

(±0.008) 
0.183 (±0.005) 

ASV2 Ustults 
0.031 

(±0.007) 
0.204 (±0.004) 

0.152 

(±0.004) 

0.313 

(±0.004) 
0.329 (±0.002) 

ASV3 Ustorthents 
0.012 

(±0.004) 
0.321 (±0.003) 

0.350 
(±0.004) 

0.240 
(±0.004) 

0.090 
(±0.002) 

 

The reflectance of each soil class is based on 

their pedogenetic development, and how this process 
influenced the distribution of soil properties, such as 

their clay fraction, and granulometry (Demattê and 

Terra, 2014). The predominant presence of specific 
minerals, for example, reflects the weathering state of 

the soil. The class of Ustuls presents mineralogy 

predominantly formed by kaolinite, feldspars, illite, 
and quartz (Lima et al., 2008; Brighenti, et al., 2012) 

while Ustorthents present also pyroxenes, olivines, 

and plagioclases in the clay fraction (Pedron et al., 
2012). In Ustalfs, because they are high-active clay 

soils, a predominance of smectites and vermiculites is 

expected (Araújo, 2000; Corrêa et al., 2003). 
In relation to the spectral response curves of 

the soils obtained with the proximal sensor, the soil 

classes of the three ASVs presented a quite different 
behavior as can be observed in Figure 2. 
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Figure 2 - Spectral curve of the soil classes obtained with proximal sensor. 
 

It was observed a greater homogeneity of 

spectral response for the Ustalfs samples, greater 

distinctions were observed only after the wavelength 
of 1350 nm. On the other hand, the other two classes 

showed a greater heterogeneity of responses at most 

wavelengths. 

Regarding the separation of the wavelengths 

that compose the soil reflectance, the separation of 

the data set from the reflectance observed in the 
analyzed bands was grouped into different principal 

components (PCs), as shown in Figure 3. 

 

 

 
Figure 3 - Variance contained in the first ten principal components of the reflectance spectrum of the soils and the 

contribution of each PC. 
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It was observed that the greatest variability of 

the data is inserted in the first principal component, 

and significant variability is observed until the third 
PC, explaining 99.4% of the variation of the total 

spectral data. The contribution of the number of 

reflectance bands in the construction of the PCs is 
strongly concentrated in the first two components, 

which indicates a low contribution in the variability 

when considering the spectral data that constitute the 

other main components. 

 In Table 3 are presented, in descending order, 

the bands (wavelengths) that most contributed to 
explaining the variability of the tree firsts PCs. It is 

possible to realize that different band ranges are 

responsible to better explain each PC, highlighting 
the ability of PCA to identify the variables that 

distinguish each of the main components defined.

 
Table 3 - Bands that most contributed to explain the variability of the PC1, PC2 and PC3. 

Rank 
PC1 PC2 PC3 

Band (nm) Contribution (%) Band (nm) Contribution (%) Band (nm) Contribution (%) 

1º 1415 0.05143 756 0.1751 356 0.2510 

2º 1418 0.05143 760 0.1751 387 0.2243 

3º 1417 0.05142 755 0.1750 382 0.2203 

4º 1414 0.05142 752 0.1748 357 0.2201 

5º 1416 0.05141 762 0.1748 384 0.2158 

6º 1421 0.05139 753 0.1746 381 0.2154 

7º 1419 0.05139 750 0.1745 434 0.2116 

8º 1420 0.05139 751 0.1744 446 0.2109 

9º 1413 0.05138 757 0.1743 433 0.2102 

10º 1412 0.05134 754 0.1742 441 0.2100 

 

After the treatment of the spectral data through 

the PCA, the first three PCs were used to separate the 

soil classes using the two-dimensional graphical 

analysis (Figure 4). 
 

 
Figure 4 - Two-dimensional analysis of the spectral data of Ustalfs, Ustults and Ustorthents. 
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It can be observed in the comparison between 

the first two PCs (PC1 x PC2) that the spectral data 

are sufficiently discriminatory to perform the 
separation between the Ustalfs, Ustults, and 

Ustorthents. The distinction between Ustorthents and 

Ustalfs was not well performed in the other two-
dimensional analyzes (PC2 x PC3 and PC1 x PC3). It 

was observed that in the analyzes between PCs with 

lower variance contribution (PC2 x PC3), the 

separation of soil classes was not satisfactory. 
The selective absorption by the soil 

components, mainly iron oxides, OM, and the 

constituents of the clay fraction, make possible the 
use of Vis-NIR in the evaluation of soil properties 

(Ben-Dor, 2002; Xie; Li, 2018). The wavelengths 

that presented the greatest contribution in the 

formation of the three principal components were the 
intervals of 1412-1420; 750-760 and 350-380 nm, 

respectively (Table 3). These wavelengths are mainly 

associated with the reflectance of clay minerals, 1:1 
(kaolinite), and 2:1 (smectite, mica, and illite) which 

have a strong signal between 1400-2200 nm, as 

affirm the authors Ben-Dor (2002) and Demattê and 
Terra (2014). These same authors also pointed out 

the importance of residual water present in the soil 

and in the 1:1 and 2:1 clay mineral that intensifies 

this spectral response.  
Therefore, when the greatest variability in the 

PC1 is observed (Figure 3), this variation should be 

associated with greater heterogeneity of reflectance 
in the range of 1350-1450 nm, in all the samples 

evaluated (Figure 2), which corroborates with the 

bands that contributed the most in the construction of 
the first component, which certainly cooperated for 

the distinction of soil classes in the two-dimensional 

analysis.  

The range of 380-430 nm and 480-550 nm are 
absorption ranges characteristic of iron oxides such 

as hematite and goethite (Sherman and Waite, 1985; 

Parikh et al., 2014) which have their formation in the 
soil conditioned to climatic characteristics and are 

responsible for soil attributes, such as their color. 

The Ustorthents class, which presented 

differentiation in the reflectance curve and in the 
two-dimensional analysis, is characterized by a 

higher albedo response and thus an upward growth of 

its curve (Figure 2) as well as an increased 
reflectance near the infrared (SWIR, 1200-2500 nm), 

which could explain the lower amount of iron oxides 

and the higher amounts of quartz present in the soil 
(Romero et al., 2018).  

The separation of all the classes using PC2 and 

PC3 was not possible due to the low accumulated 

variability of their constituents, whereas the non-
separation of Ustorthents and Ustalfs may be 

associated to the spectral behavior of the soils in the 

range 350-450 nm that contributed more strongly to 
the construction of PC3. This range makes the 

characterization of iron oxides, and due to the 

incipient degree of pedogenetic development of the 

classes (Oliveira et al., 2008, 2009), the reflectance 
variation may not have been representative enough 

for the separation. 

 

5. Conclusions 

 

From the use of spectral behavior data of 

different soil classes submitted to principal 
components analysis it was identified that the 

reflectance intervals that refer to clay minerals (1412-

1420), organic matter (750-760) and iron oxides 
(350- 380) were the main responsible for explaining 

the variability of the principal components. 

Therefore, using the spectral characterization data 

that showed greater variability submitted to PCA, it 
was possible to separate the classes Ustorthents, 

Ustalfs and Ustults from each other.  
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