A STEP BEYOND VISUALIZATION: HOW TO INGEST METEOSAT SECOND GENERATION SATELLITE DATA AND PRODUCTS INTO McIDAS-V, ILWIS AND TerraMA2

Authors

  • Humberto Alves Barbosa Dr. e Professor UFAL.
  • Leandro Rodrigo Macedo da Silva

DOI:

https://doi.org/10.29150/jhrs.v4.1.p01-18

Keywords:

EUMETCast. Meteosat-9. Geotechnologys.

Abstract

The Laboratory for Analyzing and Processing Satellite Images (LAPIS) of the University of Alagoas (UFAL) has been very active in the usage of Meteosat Second Generation (MSG) satellite data and products since 2007. These data and products are received in near-real time using simple and low cost ground reception infrastructure. Several examples of the ingest and display process for MSG satellite data and products are presented. The ingest of these satellite data and products is accomplished using a McIDAS-V, ILWIS and TerraMA2 tools. It is also shown how these MSG satellite-based products can be combined with other data. Results show that McIDAS-V, ILWIS and TerraMA2 are very useful tools to researchers and forecasters in the input and display process for MSG satellite data and products.

References

Albers, S., 1995. The LAPS wind analysis. Weather Forecasting. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO 10, 342-352. [available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.5629&rep=rep1&type=pdf].
Barbosa, H. A. Sistema EUMETCast: Uma abordagem aplicada dos Meteosat Segunda Geração. 1ed.Maceió: EDUFAL, 2013, v. 2, 186p.
Barbosa, H. A., Huete, A., Baethgen. 2006. A 20-year study of NDVI variability over the Northeast region of Brazil, Journal of Arid Environments, 67, 288-307
Barbosa, H. A., Silva Junior, I. W, Macedo Silva, L. R. 2011. Experiência da UFAL em recepção, decodificação e processamento das imagens do satélite Meteosat segunda geração (MSG). Mudanças Climáticas. Editora UFPE. Edição 1. Recife.
Barbosa, H. A.; Kumar, T. L. 2012. Strengthening Regional Capacities for Providing Remote Sensing Decision Support in Drylands in the Context of Climate Variability & Change. In: Silvern, S.; Young; S. (Org.). International Perspectives on Global Environmental Change. 2ed.Croatia: INTech, v. 1, p. 3-312.
Barbosa, H. A.; Tote, C. ; Lakshmi Kumar, T. V.; Bamutaze, Y. 2013. Harnessing Earth Observation and Satellite Information for Monitoring Desertification, Drought and Agricultural Activities in Developing Countries. In: Silvern, S.; Young; S. (Org.). Environmental Change and Sustainability. 3ed. Croatia: INTECH, v. 1, p. 3-301.
EUMETSAT, 2008. A simple conversion from effective radiance back to spectral radiance for MSG images, document n. 1053. [available from: http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=pdf_msg_conv_effrad2specrad&RevisionSelectionMethod=LatestReleased].
EUMETSAT. 2013. About EUMETSAT. Disponível em: http://www.eumetsat.int/Home/Main/AboutEU METSAT/index.htm?l=en. Data de acesso: 03/02/2013a
EUMETSAT. 2013. EUMETSAT utilises a variety of formats for product storage and distribution. The most commonly used types are listed below. Disponível em: http://www.eumetsat.int/website/home/Data/Pr oducts/Formats/index.html. Data de acesso: 06/07/2013c.
EUMETSAT. 2013. The atmospheric information available from our satellites has wider benefits than its contribution to weather forecasting. Disponível em: http://www.eumetsat.int/website/home/Data/Pr oducts/Atmosphere/index.html. Data de acesso: 06/07/2013d.
EUMETSAT. MSG 2011. Meteorological Products Extraction Facility: Algorithm Specification Document. Disponível em: http://www.eumetsat.int/Home/Main/DataProd ucts/Atmosphere/index.htm. Data de acesso: 14/03/2013. Germany.
Barbosa et al./ Journal of Hyperspectral Remote Sensing v.04, n.01, (2014) 15
EUMETSAT. MSG: 2005. Meteosat Second Generation, in orbit – in use. Germany. p1-37.
ILWIS. 2013. ILWIS, the free user-friendly raster and vector GIS. Data de acesso: 02/02/2013 [available from: http://www.ilwis.org/]
Instituto Nacional de Pesquisas Espaciais – INPE. Plataforma de Monitoramento, Análise e Alerta – TerraMA2. 2014. Disponível em: <http://www.dpi.inpe.br/terrama2/>. Acesso em: 27 março 2014.
Kehrer, J. 2011. Interactive visual analysis of multi-faceted scientific data (Doctoral dissertation, PhD dissertation, Dept. of Informatics, Univ. of Bergen, Norway).
LSA SAF. 2013. Product User Manual: Vegetation parameters. Portugal, 2008. Disponível em: http://landsaf.meteo.pt/products/prods.jsp. Data de acesso: 13/03/2013.
McGinley, J. A., Albers, S. C., Stamus, P. A., 1992. Local data assimilation and analysis for nowcasting. Adv. Space Res. 12, 179-188.
Nocke, T., Sterzel, T., Böttinger, M., & Wrobel, M. 2008. Visualization of climate and climate change data: An overview. Digital earth summit on geoinformatics, 226-232.
Ouellette, J. 2013. The Mathematical Shape of Things to Come - Scientific data sets are becoming more dynamic, requiring new mathematical techniques on par with the invention of calculus In: Quanta Magazine, October 4.
Silva Junior, I. W. 2010. Desenvolvimento de aplicações operacionais para o monitoramento meteorológico, ambiental e oceanográfico utilizando dados do sistema EUMETCast. Dissertação (Mestrado em Meteorologia), UFAL, Maceió.
TERRAVIEW 4.1.0. 2013. Projeto TerraView. São José dos Campos, SP: INPE, 2010. Disponível em: www.dpi.inpe.br/terraview. Acesso em: 24/02/2013.
UNEP. 2008. Climate change strategy, United Nations Environment Programme.
Wolf L and Williams M. 2008. GEONETCast - Delivering environmental data to users worldwide (September 2007). IEEE Systems Journal, vol. 2, No. 3.

Downloads

Published

2014-04-08

How to Cite

Barbosa, H. A., & Silva, L. R. M. da. (2014). A STEP BEYOND VISUALIZATION: HOW TO INGEST METEOSAT SECOND GENERATION SATELLITE DATA AND PRODUCTS INTO McIDAS-V, ILWIS AND TerraMA2. Journal of Hyperspectral Remote Sensing, 4(1), 01–18. https://doi.org/10.29150/jhrs.v4.1.p01-18

Issue

Section

Hyperspectral remote sensing and Atmosphere