Seasonality of Vegetation Indices in different land uses in the São Francisco Valley

Cloves Vilas Boas Santos

Abstract



Remote Sensing has been used in researches with higher frequency to allow the analysis of the surface without the contact with the targets, allowing to identify biophysical conditions of the vegetation and understanding its photosynthetic dynamics. The objective of this study was to analyze the seasonal behavior of NDVI and EVI2 vegetation indices with and without transforming wavelets in areas with different soil uses in the São Francisco Valley and to verify their relationship with the occurrence of rainfall. The study was carried out in areas of preserved and degraded caatinga, and degraded pasture in the municipality of Petrolina-PE. NDVI was determined on 20 OLI sensor images with dates representing rainy and dry periods between 2013 and 2016. EVI2 data with and without filter were obtained for MODIS pixels. Precipitation data were used to understand the relationship between vegetation indexes and rainfall occurrence. The results showed that the studied areas presented similar behavior among vegetation indexes, but with different intensities, presenting higher values in January 2014, April 2015 and March 2016, coinciding with the occurrence of higher precipitation records in the region. The relationship between vegetation indexes and precipitation was linear. Therefore, it was possible to determine the seasonality of the studied areas, making it possible to understand that through the OLI and MODIS data, it was possible to analyze the dynamics of the vegetation and its relation to the rainfall.


Keywords


Caatinga biome, NDVI, Rainfall

References


Becerra, J. A. B.; Shimabukuro, Y. E.; Alvalá, R. C. S., 2009. Relação do padrão sazonal da vegetação com a precipitação na região de Cerrado da Amazônia Legal, usando índices espectrais de vegetação. Revista Brasileira de Meteorologia 2, 125-134.

Jiang, Z.; Huete, A. R.; Didan, K.; Miura, T, 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment 10, 3833-3845.

Lima Junior, C.; Accioly, L. J. O.; Giongo, V.; Lima, R. L. F. A.; Sampaio, E. V. S. B.; Menezes, R. S. C., 2014. Estimativa de biomassa lenhosa da Caatinga com uso de equações alométricas e índice de vegetação. Scientia Forestalis 102, 289-298.

Mascarenhas, L. M. A.; Ferreira, M. E.; Ferreira, L. G., 2009. Sensoriamento Remoto como instrumento de controle e proteção ambiental: Análise da cobertura vegetal remanescente na Bacia do Rio Araguaia. Sociedade & Natureza 1, 5-18.

Oliveira, M. B. L.; Santos, A. J. B.; Manzi, A. O.; Alvalá, R. C. S.; Correia, M. F.; Moura, M. S. B., 2006. Trocas de energia e fluxo de carbono entre a vegetação de Caatinga e atmosfera no nordeste brasileiro. Revista Brasileira de Meteorologia 3b, 166-174.

Pedroza da Silva, S. C.; Baptista, G. M. M., 2015. Análises Espectrais da Vegetação com Dados Hyperion e sua Relação com a Concentração e o Fluxo de CO2 em diferentes ambientes na Amazônia Brasileira. Boletim de Ciências Geodésicas 2, 354-370.

Rocha, A. P. T.; Abreu, B. S.; Furtado, D. A.; Baracuhy, J. G. V.; Fernandes Neto, S., 2011. Manejo ecológico integrado de bacias hidrográficas no semiárido brasileiro. 1th ed. epgraf, Campina Grande.

Rouse, J. W.; Haas, R. H., Schell, J. A.; Deering, D.W., 1973. Monitoring Vegetation Systems in the Great Plains with ERTS. In: Proceeding Of Erts‐1 Symposium. Anais ... NASA, United States.

Souza, L. S. B.; Moura, M. S. B.; Sediyama, G. C.; Silva, T. G. F., 2015. Balanço de energia e controle biofísico da evapotranspiração na Caatinga em condições de seca intensa. Pesquisa Agropecuária Brasileira 8, 627-636.

Tavares, T. R.; Fiorio, P. R.; Martello, M; Strabeli, T. F.; Barros, P. P. S, 2015. Normalized Difference Vegetation Index (NDVI) de diferentes tipos de vegetação nativa no período de estiagem de 2011 e 2014, em Piracicaba-SP. Revista Hipótese 2, 77-91.

Zanzarini, F. V.; Pissarra, T. C.; Brandão, F. J. C.; Texeira, D. D. B., 2013. Correlação espacial do índice de vegetação (NDVI) de imagem Landsat/ETM+ com atributos do solo. Revista Brasileira de Engenharia Agrícola e Ambiental 6, 608-614.




DOI: http://dx.doi.org/10.5935/jhrs.v7i3.23150

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Hyperspectral Remote Sensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.