Using Landsat-8 images in the estimation of the surface radiation balance

Laurizio Emanuel Ribeiro Alves, Ismael Guidson Farias de Freita, Heliofábio Barros Gomes, Fabrício Daniel dos Santos Silva, Maurílio Neemias dos Santos

Abstract


The variation of the biophysical parameters is fundamental for the understanding of the dynamics of the land use and coverage in the estimation of the  surface radiation balance.In this context, the objective is to evaluate and validate the surface radiation balance for the Mogi Guaçu River Basin (MGRB) using Landsat-8 images and the Surface Energy Balance Algorithm for Land (SEBAL) algorithm.For the study used a Landsat-8 image orbits 220 and point 75 for the day 15/06/2015 and data from automatic stations Pradópolis and São Carlos (SP).The image processing was performed in the Qgis 2.18 software, where it performed the atmospheric correction (reflectance and radiance), then the albedo, temperature, emissivity, vegetation index, short wave and incident finally the radiation balance.The results showed that the dynamics of soil use and cover changes the final radiation balance, once the lowest values of albedo and temperature presented higher values of Normalized Difference Vegetation Index (NDVI) and Radiation balance, whereas higher values of albedo and temperature were noticed lower values of NDVI and Radiation Balance.The relative error obtained by the comparison of the measured and estimated radiation balance was around 4.35% showing the good accuracy of the Landsat-8 images for the estimation.

Keywords


Remote sensing; Biophysical parameters; Radiation balance

Full Text:

PDF

References


Bastiaanssen, W.G.M. Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. 1995. Dissertação Ph.D., Ph.D. in Eco-Hydrology, Wageningen Agricultural University (Wageningen). Disponível em: http://library.wur.nl/WebQuery/wurpubs/fulltext/206553. Acessado em 16 mar. 2017.

Bastiaanssen, W. G. M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin.Turkey. JournalofHidrology. V. 229, p. 87-100. 2000.

Da Silva, Luiz Carlos et al. Estimativa do balanço de radiação por sensoriamento remoto de diferentes usos de solo no sudoeste da Amazônia brasileira/Estimativeofradiation balance byremotesensingof diferente soil uses in thebraziliansouthernAmazon. Revista Sociedade & Natureza, v. 27, n. 2, 2015.

Gartland, Lisa. Ilhas de calor. São Paulo: Oficina de Textos, p.9-10, 2010.

Gomes, H. B. Balanço de radiação e energia em áreas de cultivo de Cana-de-açúcar e Cerrado no Estado de São Paulo mediante imagens orbitais. 2009. Tese Doutorado. Universidade Federal de Campina Grande (UFCG). Disponível em: http://www.dca.ufcg.edu.br/posgrad_met/teses/HeliofabioBarrosGomes_2009.pdf. Acessado em 17 mar. 2017.

Giongo, P. R. Mapeamento do balanço de energia e evapotranspiração diária por meio de técnicas de sensoriamento remoto. 2011. Tese de Doutorado. Escola Superior de Agricultura “Luiz de Queiroz. Disponível em: http://www.teses.usp.br/teses/disponiveis/11/11143/tde-13092011-092028/en.php. Acessado em 17 mar. 2017.

IBGE. Disponívelem: < http://www.ibge.gov.br/>. Acesso em 17 mar. 2017.

Instituto nacional do semiárido – INSA. NDVI – parceria INSA e LAPIS/UFAL. 2017. Disponível em: http://www.insa.gov.br/ndvi#.WNJ_kPnyu70. Acessado em: 22 mar 2017.

Santos, F. A. C.; Santos, C. A. C.; Araújo, A. L.; Cunha, J. E. B. Performance Of Methodologies For Estimating Net Radiation From Modis Images. Rev. bras. Meteorol. São Paulo, v. 30, n. 3, p. 295-306, set. 2015 . Disponível em . Acessadoem 17 mar. 2017.

Silva, Bernardo B. da et al. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 1, p. 3-8, 2016.

Sistema Integrado de Gerenciamento de Recursos Hídricos do Estado de São Paulo (SigRH). 2016. Disponível em: http://www.sigrh.sp.gov.br/cbhmogi/apresentacao. Acessado em 21 mar. 2017.




DOI: https://doi.org/10.29150/jhrs.v7i2.23191

Refbacks



Copyright (c) 2017 Journal of Hyperspectral Remote Sensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.