Aridy index over time in five ecosystems on semiarid

Otacilio Antunes Santana, José Imaña Encinas, Bárbara Alves de Sousa, Sandra Razana Silva do Monte, Valéria Sandra de Oliveira Costa


The local climate change was registered over time (1992-2018) on different land use ecosystems, in Brazilian Semiarid area. The aimed of this work was to analyze aridity index in five ecosystems (Wild Caatinga, Caatinga on management, Cactaceae field, Eucalyptus reforestation, and Fabaceae crop), and to compare this index with environment variables. Meteorological towers and measures with porometer and psychrometers were carried out to collect the data. The main result was that the studied areas are hotter and drier. The Fabaceae crop and Eucalyptus reforestation studied ecosystems already are on Arid classification according with registered aridity index. Wild Caatinga and Cactaceae field ecosystems are on Semiarid classification, and over time Caatinga on management ecosystem pass from Semiarid to Arid classification. The five ecosystems together are classified on Arid climate. The VPD and Ψsoil were the variables more directly proportional with Aridity index to analyzed ecosystems.


local climate change; water deficit; droughts; desertification

Full Text:



Arora, V.K., 2002. The use of the aridity index to assess climate change effect on annual runoff. Journal of Hydrology 265, 164–177. doi:10.1016/S0022-1694(02)00101-4

Dahlin, K.M., Fisher, R.A., Lawrence, P.J., 2015. Environmental drivers of drought deciduous phenology in the Community Land Model. Biogeosciences Discussion 12, 5803–5839. doi:10.5194/bgd-12-5803-2015

Du, S., Wang, Y.L., Kum, T., Zhang, J.G., Otsuki, K., Yamanak, N., Liu, G.B., 2011. Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology 151, 1-10. doi:10.1016/j.agrformet.2010.08.011

EMBRAPA SEMIÁRIDO. Empresa Brasileira de Pesquisa Agropecuária do Semiárido, 2019. Desertificação atinge grandes áreas do semiárido. Disponível: Acesso: 10 jan. 2019.

Hulme, M., Viner, D., 1998. A climate change scenario for the tropics. Climatic Change 39, 145–176. doi:10.1023/a:1005376007729.

INSA. Instituto Nacional do Semiárido, 2019. Acervo digital. Disponível: Acesso: 15 abr. 2019.

Gondim, P.S.D.S., Lima, J.R.D.S., Antonino, A.C., Hammecker, C., Silva, R.A., Gomes, C.A., 2015. Environmental control on water vapour and energy exchanges over grasslands in semiarid region of Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 19, 3-8.


Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Sheffield, J., Goulden, M.L., Bonan, G., Cescatti, A., Chen, J., Jeu, R., Dolman, A.J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B.E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A.D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K., 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954. doi:10.1038/nature09396.

Lima, C., Duarte, C.V.M.C., Melo, R.B., Souza, S.C., Lima, M.L.F., Costa, V.S.O., Cavalcante, K.V., Santana, O.A., 2019. Pré-diagnóstico da esquistossomose no semiárido: régua antropométrica e aplicativo colaborativo. Revista de Tecnologia e Sociedade 15, 272-293. doi: 10.3895/rts.v15n36.7809

Mainguet, M., 1994. Desertification: natural background and human mismanagement. 2. ed. Springer-Verlag, Heidelberg.


Maliva, R.G., Missimer, T.M., 2012. Arid Lands Water Evaluation and Management. Springer-Verlag, Heidelberg.


Marengo, J.A., Bernasconi, M., 2015. Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Climatic Change 129, 103–115. doi:10.1007/s10584-014-1310-1

Moura, M.S.B., Galvincio, J.D., Brito, L.T.L., Souza, L.S.B., Sá, I.I.S., Silva, T.G. F., 2007. Clima e água de chuva no Semi-Árido, in: Brito, L.T.L., Moura, M.S.B., Gama, G.F.B. (eds.). Potencialidades da Água de Chuva no Semi-Árido Brasileiro. Embrapa Semi-Árido, Petrolina, pp. 37-59.

Nobrega, R.S., Farias, R.F.L., Santos, C.A.C., 2015. Temporal and spatial variability of rainfall in Pernambuco by extreme climatic indices. Revista Brasileira de Meteorologia 30, 171-180. doi:10.1590/0102-778620130624.

Rodal, M.J.N., Sampaio, E.V.S., Figueiredo, M.A., 1992. Manual sobre Métodos de Estudo Florístico e Fitossociológico: ecossistema caatinga. Sociedade Botânica do Brasil, Brasília, pp. 24.

Rubel, F., Kottek, M., 2010. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorologische Zeitschrift 19, 135–141. doi:10.1127/0941-2948/2011/0258

Salazar, A., Baldi, G., Hirota, M., Syktus, J., Mcalpine, C., 2015. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Global and Planetary Change 128, 103–11. doi:10.1016/j.gloplacha.2015.02.009

Santana, O.A., 2016. Resistência social na Caatinga árida: a narrativa de quem ficou no colapso ambiental. Desenvolvimento e Meio Ambiente 38, 419-438. doi: 10.5380/dma.v38i0.43574

SANTANA, O.A., 2017. Minimum age for clear-cutting native species with energetic potential in the Brazilian semi-arid region. Canadian Journal of Forest Research 47, 411-417. doi: 10.1139/cjfr-2016-0392

Santana, O.A., Cuniat, G., Imaña-Encinas, J., 2010. Contribuição da vegetação rasteira na evapotranspiração total em diferentes ecossistemas do bioma cerrado, Distrito Federal. Ciência Florestal 20, 269-280. doi:10.5902/19805098

Santana, O.A., Encinas, J.I., 2016. Dendrophysiological plant strategies of Poincianella pyramidalis (Tul.) L.P. Queiroz after wood herbivory in semiarid region of Paraíba - Brazil. Acta Scientiarum. Biological Sciences 38, 179-186. doi: 10.4025/actascibiolsci.v38i2.29089

Scholz, F.G., Bucci, S.J., Hoffmann, W.A., Meinzer, F.C., Goldstein, G., 2010. Hydraulic lift in a Neotropical savanna: experimental manipulation and model simulations. Agricultural and forest meteorology 150, 629-639. doi:10.1016/j.agrformet.2010.02.001

Schwartz, N.B., Uriarte, M., Gutiérrez-Vélez, V.H., Baethgen, W., Defries, R., Fernandes, K., Pinedo-Vasquez, M.A., 2015. Climate, landowner residency, and land cover predict local scale fire activity in the Western Amazon. Global Environmental Change 31, 144-153. doi:10.1016/j.gloenvcha.2015.01.009

Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O., Williams, S.E., 2004. Extinction risk from climate change. Nature 427, 145-148. doi:10.1038/nature02121

UNESCO. United Nations Educational, Scientific and Cultural Organization, 1979. Map of the World Distribution of Arid Regions: Map at scale 1:25,000,000 with explanatory note. UNESCO, Paris.

Vico, G., Thompson, S.E., Manzoni, S., Molini, A., Albertson, J.D., Almeida-Cortez, J.S., Fay, P.A., Feng, X., Guswa, A.J., Liu, H., Wilson, T.G., Porporato, A., 2015. Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydroly 8, 660–681. doi:10.1002/eco.1533

Wetherald, R.T., Manabe, S., 2002. Simulation of hydrologic changes associated with global warming. Journal of Geophysical Research: Atmospheres 107, 7-15. doi:10.1029/2001jd001195.

Yang, Y., Scott, R.L., Shang, S., 2013. Modeling evapotranspiration and its partitioning over a semiarid shrub ecosystem from satellite imagery: a multiple validation. Journal of Applied Remote Sensing 7, 1-16. doi:10.1117/1.JRS.7.073495

Zar, J.H., 2010. Biostatistical Analysis. 5th. ed. Prentice Hall, Upper Saddle River, pp. 944.

Zarch, M.A.A., Sivakumar, B., Sharma, A., 2015. Assessment of global aridity change. Journal of Hydrology 520, 300–313. doi:10.1016/j.jhydrol.2014.11.033


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:


Google Scholar


Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202