Use of proximal sensor for soil classes separation applying Principal Component Analysis (PCA)

Valéria Ramos Lourenço, David Bruno de Sousa Teixeira, Carlos Alexandre Gomes Costa, Calors Alberto Kenji Taniguchi

Abstract


The spectrally active components of the soil allow the realization of integrative analyzes of soil aspects such as their classification. The purpose of this study was to evaluate the separation of soil classes from spectral reflectance data using principal components analysis (PCA). The study was carried out in the Aiuaba Experimental Basin located in the municipality of Aiuaba, Ceará, Brazil. Soil samples were collected in Ustalfs, Ustults and Ustorthents profiles. The samples were submitted to spectral analysis by a spectroradiometer and, subsequently, to PCA. Principal components were used to identify which of them contribute more significantly to the separation of the soil classes analyzed, based on their relationship with the soil attributes using a two-dimensional graphical analysis. From the examination of spectral behavior data of the different soil classes, the use of PCA allowed the separation of the classes Ustorthents, Ustalfs and Ustults from each other.


Keywords


Ustalfs; Ustults; Ustorthents; Reflectance, Spectroradiometer

Full Text:

PDF

References


Araújo, M. do S. B. Fósforo em toposseqüências de Latossolos e Luvissolos do semi-árido de Pernambuco. [s.l.] Universidade Federal de Viçosa, 2000.

Askari, M. S.; O’rourke, S. M.; Holden, N. M. Evaluation of soil quality for agricultural production using visible-near-infrared spectroscopy. Geoderma, v. 243–244, p. 80–91, 2015.

Awiti, A. O.; Walsh, M. G.; Shepherd, K. D.; Kinyamario, J. Soil condition classification using infrared spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland chronosequence. Geoderma, v. 143, n. 1-2, p. 73-84, 2008.

Ben-Dor, E. Quantitative remote sensing of soil properties. Advances in Agronomy, v. 75, p. 173-244, 2002.

Brighenti, I; Almeida, J A; Hofer, A. Mineralogia e gênese de argissolos das serras do Tabuleiro/Itajaí, Estado de Santa Catarina. Revista Brasileira de Ciência do Solo, v. 36, p. 1057–1071, 2012.

Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y; Hong, Y; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma, v. 336, n. August 2018, p. 59–67, 2019.

Corrêa, M. M.; Ker, J. C.; Mendonça, E. S.; Ruiz, H. A.; Bastos, R. S. Atributos físicos, químicos e mineralógicos de solos da região das Várzeas de Sousa (PB). Revista Brasileira de Ciência do Solo, v. 27, p. 311–324, 2003.

Costa, C. A. G.; Lopes, J. W. B.; Pinheiro, E. A. R.; Araújo, J. C. D.; Gomes Filho, R. R. Spatial behaviour of soil moisture in the root zone of the Caatinga biome. Revista Ciência Agronômica, v. 44, n. 4, p. 685-694, 2013.

Curcio, D.; Ciraolo, G.; D’Asaro, F.; Minacapilli, M. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, v. 19, p. 494–503, 2013.

De Araújo, J. C.; González Piedra, J. I. Comparative hydrology: analysis of a semiarid and a humid tropical watershed. Hydrological Processes, v. 23, n. 8, p. 1169–1178, 2009.

Demattê, J. A. M.; Terra, F. S. Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations. Geoderma, v. 217–218, p. 190–200, 2014.

Hair, J. F.; Black, W. C.; Babin, B. J.; Anderson, R. E.; Tatham, R. L. Análise multivariada de dados. Bookman Editora, 2009. p. 682.

Jiang, Q.; Li, Q.; Wang, X.; Wu, Y.; Yang, X.; Liu, F. Estimation of soil organic carbon and total nitrogen in different soil layers using VNIR spectroscopy: Effects of spiking on model applicability. Geoderma, v. 293, p. 54–63, 2017.

Jolliffe, I. T.; Cadima, J. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 374, n. 2065, p. 20150202, 2016.

Kalambukattu, J. G.; Kumar, S.; Arya Raj, R. Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model. Environmental Earth Sciences, v. 77, p. 203, 2018.

Laborczi, A.; Szatmári, G.; Takács, K.; Pásztor, L. Mapping of topsoil texture in Hungary using classification trees. Journal of Maps, v. 12, n. 5, p. 999–1009, 2016.

Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, v. 25, n. 1, 2008.

Levi, M. R.; Rasmussen, C. Covariate selection with iterative principal component analysis for predicting physical soil properties. Geoderma, v. 219, n. 220, p. 46–57, 2014.

Liddicoat, C.; Maschmedt, D.; Clifford, D.; Searle, R.; Herrmann, T.; Macdonald, L. M.; Baldock, J. Predictive mapping of soil organic carbon stocks in South Australia’s agricultural zone. Soil Research, v. 53, n. 8, p. 956–973, 2015.

Lima, J. G. D. C.; Schulze, S. M. B. B.; Ribeiro, M. R.; Barreto, S. D. B. Mineralogia de um argissolo vermelho-amarelo da zona úmida costeira do estado de Pernambuco. Revista Brasileira de Ciência do Solo, v. 32, n. 2, p. 881-892, 2008.

Mendonça-Santos, M. D. L.; Dart, R. D. O.; Santos, H. G.; Coelho, M. R.; Berbara, R. L. L.; Lumbreras, J. F. Digital Soil Mapping of Topsoil Organic Carbon Content of Rio de Janeiro State, Brazil. In: Digital Soil Mapping. Dordrecht: Springer Netherlands, 2010. p. 255–266.

Moura-Bueno, J. M.; Dalmolin, R. S. D.; ten Caten, A.; Dotto, A. C.; Demattê, J. A. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions. Geoderma, v. 337, p. 565–581, 2019.

Nketia, K. A.; Asabere, S. B.; Erasmi, S.; Sauer, D. A new method for selecting sites for soil sampling, coupling global weighted principal component analysis and a cost-constrained conditioned Latin hypercube algorithm. MethodsX, v. 6, p. 284-299, 2019.

Ogen, Y.; Goldshleger, N.; Ben-Dor, E. 3D spectral analysis in the VNIR–SWIR spectral region as a tool for soil classification. Geoderma, v. 302, p. 100–110, 2017.

Oliveira, L. B. D.; Fontes, M. P. F.; Ribeiro, M. R.; Ker, J. C. Micromorfologia e gênese de Luvissolos e Planossolos desenvolvidos de rochas metamórficas no semi-árido brasileiro. Revista Brasileira de Ciência do Solo, v. 32, n. 6, p. 2407-2423, 2008.

Oliveira, L. B. D.; Fontes, M. P. F.; Ribeiro, M. R.; Ker, J. C. Morfologia e classificação de Luvissolos e Planossolos desenvolvidos de rochas metamórficas no semiárido do nordeste brasileiro. Revista Brasileira de Ciência do Solo, v. 33, n. 5, p. 1333-1345, 2009.

Parikh, S. J.; Goyne, K. W.; Margenot, A. J.; Mukome, F. N.; Calderón, F. J. Soil Chemical Insights Provided through Vibrational Spectroscopy. Advances in Agronomy, v. 126, p. 1–148, 2014.

Pedron, F. A.; De Azevedo, A. C.; Dalmolin, R. S. D. Alteração mineralógica de neossolos em uma climo-litossequência no planalto do rio grande do sul. Ciencia Rural, v. 42, n. 3, p. 451–458, 2012.

Pinheiro, E. A. R.; Metselaar, K.; de Jong van Lier, Q.; de Araújo, J. C. Importance of soil-water to the Caatinga biome, Brazil. Ecohydrology, v. 9, n. 7, p. 1313–1327, 2016.

R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2019. Disponível em:

Romero, D. J.; Ben-Dor, E.; Demattê, J. A.; Souza, A. B.; Vicente, L. E.; Tavares, T. R.; Martello, M.; Strabeli, T. F.; Barros, P. P. S.; Fioro, P. R.; Gallo, B. C.; Sato, M. V.; Eitelwein, M. T. Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis. Geoderma, v. 312, p. 95-103, 2018.

Rossel, R. A. V.; Webster, R. Discrimination of Australian soil horizons and classes from their visible-near infrared spectra. European Journal of Soil Science, v. 62, n. 4, p. 637–647, 2011.

Rossel, R. V.; Behrens, T.; Ben-Dor, E.; Brown, D. J.; Demattê, J. A. M.; Shepherd, K. D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; Aïchi, H.; Barthès, B. G.; Bartholomeus, H. M.; Bayer, A. S.; Bernoux, M.; Böttcher, K.; Brodský. L.; Du, C. W.; Chappell, A.; Fouad, Y.; Genot, V.; Gomez, C.; Grunwald, S.; Gubber, A.; Guerrero, C.; Hedley, C. B.; Knadel, M.; Morrás, H. J. M.; Nocita, M.; Ramirez-Lopez, L.; Roudier, P.; Campos, E. M. R.; Sanborn, P.; Sellitto, V. M., Sudduth, K. A.; Rawlins, B. G.;Walter, C.; Winowiecki, l. A.; Hong, S. Y.; Ji, W. A global spectral library to characterize the world’s soil. Earth Science Reviews, v. 155, p. 198–230, 2016.

Sherman, D. M.; Waite, D. T. Electronic spectra of Fe3 + oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, v. 70, p. 1262–1269, 1985.

Stenberg, B.; Rossel, R. A. V.; Mouazen, A. M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. In: Advances in agronomy. Academic Press, 2010. p. 163-215.

Teixeira, P. C.; Donagemma, G. K.; Fontana, A.; Teixeira, W. G. Manual de métodos de análise de solo. Rio de Janeiro, v. 4, 2017.

Vasques, G. M.; Grunwald, S.; Sickman, J. O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma, v. 146, n. 1–2, p. 14–25, 2008.

Xie, X.; Li, A. Identification of soil profile classes using depth-weighted visible-near- infrared spectral reflectance. Geoderma, v. 325, n. April, p. 90–101, 2018.

Wu, X; Wai, H; Li, L; Scaglione, A. A Review of Distributed Algorithms for Principal Component Analysis. Proceeding of the IEEE, v. 106, n. 8, p. 1321–1340, 2018.

Zhiyuan, W.; Dengfeng, W.; Huiping, Z.; Zhiping, Q. I. Assessment of Soil Heavy Metal Pollution with Principal Component Analysis and Geoaccumulation Index. Procedia Environmental Sciences, v. 10, p. 1946–1952, 2011.




DOI: https://doi.org/10.29150/jhrs.v10.3.p130-137

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:

 

Google Scholar

 

Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202