SPATIOTEMPORAL VARIATION OF FIRE OCCURRENCE IN THE STATE OF BAHIA, BRAZIL, BETWEEN 2003 AND 2019

Benjamin Leonardo Alves White

Abstract


Wildland fires are responsible for impacts in the fauna and flora in fire sensitive ecosystems and release into the atmosphere greenhouse gases responsible for global warming. This study aims to analyze the spatiotemporal variation of hot spots detected by the AQUA satellite from 2003 to 2019 in the state of Bahia, and to determine the main factors affecting the fire frequency of incidence. A significant downtrend was observed in the number of hot spots recorded over the years and about 65% of them were detected in the months of September and October. The Southcenter and the Northwest state’s regions were the ones with highest hot spot incidence, while the Northeast and East Central regions presented lower incidence. Presidente Jânio Quadros was the municipality with the highest hot spot incidence per area. Besides this one, there were another 351 municipalities (accounting together with almost 75% of the state area) that were classified in the “Extreme”, “Very High” and “High” classes of hot spot incidence. The independent variables that presented a significant correlation with the municipality hot spot density were, in decreasing order of significance: percentage of land covered by savanna; percentage of land covered by agriculture and pastures; percentage of land covered by forests; mean annual temperature; mean annual rainfall; and demographic density. The results obtained in this study should be used by municipal and state environmental agencies seeking to reduce the wildland fire occurrence and thus ensuring biodiversity conservation and reduction in the release of green house gases.        


Keywords


Prevenção de Fogo, Focos de Calor, Sensoriamento Remoto, Incêndios Florestais.

Full Text:

PDF

References


ARBEX, M. A.; CANÇADO, J. E. D.; PEREIRA, L. A. A.; BRAGA, A. L. F.; SALDIVA, P. H. D. N. 2004. Queima de biomassa e efeitos sobre a saúde. Jornal Brasileiro de Pneumologia, Brasília, v. 30, n. 2, p. 158-75, 2004.

AJIN, R. S.; LOGHIN, A. M.; JACOB, M. K.; VINOD, P. G.; KRISHNAMURTHY, R. R. The Risk Assessment Study of Potential Forest Fire in Idukki Wildlife Sanctuary using RS and GIS Techniques. International Journal of Advanced Earth Science and Engineering, NCR Delhi, v. 5, n. 1, p. 308-318, 2016.

BATISTA, A. C. Detecção de incêndios florestais por satélite. Floresta, Curitiba v. 34, n. 2, p. 237-241, 2004.

CBPM - Companhia Baiana de Pesquisa Mineral. Meio Ambiente na Bahia. 2020. Available at: . Accessed on 04 Jun 2020.

CLIMATE-DATA. Dados climáticos para cidades mundiais. 2020. Available at: < https://pt.climate-data.org/>. Accessed on 16/02/2017.

JIMÉNEZ-MUÑOZ, J. C.; MATTAR, C.; BARICHIVICH, J.; SANTAMARÍA-ARTIGAS, A.; TAKAHASHI, K.; MALHI, Y.; SOBRINO, J. A.; VAN DER SCHRIER, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, [S.l.], v. 6, Article number: 33130, 2016.

KOTTEK, M.; GRIESER, J.; BECK, C.; RUDOLF, B.; RUBEL, F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15, n. 3, p. 259-263, 2006.

MAPBIOMAS. Coleção 2018 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. 2020. Available at: . Accessed on 03 Jun 2020.

MENDONÇA, F.; DANNI-OLIVEIRA, I. M. Climatologia: noções básicas e climas do Brasil. São Paulo: Oficina de Texto, 2007.

MORITZ, M. A. Wildfires ignite debate on global warming. Nature, London, v. 487, n. 7407, p. 273-273, 2012.

NASA - NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. More MODIS: MODIS Collection 6 Near Real-Time Products Now Available. Available at . Accessed on 01 June 2020.

NWCG - NATIONAL WILDFIRE COORDINATING GROUP. Glossary A-Z. Available at: . Accessed on 01 Jun 2020.

NOLASCO, M. I. M.; SANHUEZA, P. I. Wildfires in South America. Crisis response, Dorking, v. 6, n. 1, p. 56-57, 2011.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Sinopse do Censo Demográfico de 2010. Rio de Janeiro: IBGE, 2011.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Área territorial brasileira. Rio de Janeiro: IBGE, 2020.

INPE - INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Portal do Monitoramento de Queimadas e Incêndios. Available at: . Accessed on 01 Jun 2020.

SHLISKY, A.; ALENCAR, A. A.; NOLASCO, M. M.; CURRAN, L. M. Overview: Global fire regime conditions, threats, and opportunities for fire management in the tropics. In: COCHRANE, M.A. (Ed.). Tropical fire ecology: climate change, land use and ecosystem dynamics. Heidelberg: Springer Praxis Books, p.65-83, 2009.

SOARES, R. V.; BATISTA, A. C. Incêndios Florestais: controle, efeitos e uso do fogo. Curitiba: UFPR, 2007. 250p.

SURYABHAGAVAN, K. V.; ALEMU, M.; BALAKRISHNAN, M. GIS-based multi-criteria decision analysis for forest fire susceptibility mapping: a case study in Harenna forest, southwestern Ethiopia. Tropical Ecology, [S.l.], v. 57, n. 1, p. 33-43, 2016.

WANG, S.; MIAO, L. L.; PENG, G. An improved algorithm for forest fire detection using HJ data. Procedia Environmental Sciences, [S.l.], v. 13, p. 140-150, 2012.

WHITE, B. L. A. Spatiotemporal variation in fire occurrence in the state of Amazonas, Brazil, between 2003 and 2016. Acta Amazonica, Manaus, v. 48, n. 4, p. 358-367, 2018a.

WHITE, B. L. A. Modelos matemáticos de previsão do teor de umidade dos materiais combustíveis florestais finos e mortos. Ciência Florestal, Santa Maria, v. 28, n. 1, p. 432-445, 2018b.

WHITE, B. L. A. Satellite detection of wildland fires in South America. Floresta, Curitiba, v. 49, n. 4, p. 851-858, 2019.

WHITE, B. L. A.; WHITE, L. A. S. Queimadas e incêndios florestais no estado de Sergipe, Brasil, entre 1999 e 2015. Floresta, Curitiba, v. 46, n. 4, p. 561-570, 2016.

WHITE, L. A. S.; WHITE, B. L. A.; RIBEIRO, G. T. Modelagem especial do risco de incêndio florestal para o município de Inhambupe, BA. Pesquisa Florestal Brasileira, Colombo, v. 36, n. 85, p. 41-49, 2016.




DOI: https://doi.org/10.29150/jhrs.v10.3.p153-167

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:

 

Google Scholar

 

Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202