Helder J Farias Silva, Weber Andrande Gonçalves, Bergson Guedes Bezerra


Sensitivity Analysis (SA) is important to understand the relative importance of climate variables in the reference evapotranspiration (ETo) computation. In this study, a sensitivity coefficient was used to predict ETo responses to disturbances of five climatic variables in the Amazonian Hydrographic Region - AHR (Brazilian Amazon). The ETo was estimated using the standardized equation of Penman-Monteith-FAO (PM-FAO). A 15-year meteorological data set of 38 surface meteorological stations were used in the study. An additional analysis was also presented to determine homogeneous regions of ETo by means of Cluster Analysis. The results showed that seven homogeneous sub-regions are sufficient to divide the AHR into different ETo patterns which were separated considering the intensity and the seasonal pattern of ETo. By the SA, the variables that contribute most to the computation of ETo using the PM-FAO method were the balance of radiation (Rn) and wind speed (u2). These results demonstrate that, in general, it should be emphasized to precise measures of insolation, since the precise estimation of Rn is directly associated with the measurement of this variable as well as of u2, which proved to be the second most influential variable in the ETo computation.


Penman-Monteith; Cluster Analysis; Sensitivity Coefficient.

Full Text:



Alencar, L.P.; Sediyama, G.C.; Wanderley, H.S.; Almeida, T.S.; Delgado, R.C.; Vieira, G.H.S., 2012. Evolução temporal da evapotranspiração de referência e sua sensibilidade aos principais elementos climáticos na cidade de Uberaba – MG. Revista Brasileira de Ciências Agrárias, v. 7, p. 159-166.

Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M., 1988. Crop evapotranspiration: guidelines for computing crop water requirements. FAO, Rome. Irrigation and Dranaige Paper, 56.

Ambas, V.Th. and Baltas, E., 2012. Sensitivity analysis of different evapotranspiration methods using a new sensitivity coefficient. Global NEST Journal, v. 14, p. 335-343.

ANA, Agência Nacional de Águas. Região Hidrográfica Amazônica. Disponível em: < >. Access: nov., 24, 2016.

Bakhtiari, B. and Liaghat, A.M., 2011. Seasonal Sensitivity Analysis for Climatic Variables of ASCE-Penman-Monteith Model in a Semi-arid Climate. Journal of Agricultural Science and Technology, v. 13, p. 1135-1145.

Bien, J. and Tibshirani, R., 2011. Hierarchical clustering with prototypes via minimax linkage. Journal of the American Statistical Association, v. 106, p. 1075-1084.

Carvalho, L.G.; Rios, G.F.A.; Miranda, W. L.; Neto, P.C., 2011. Evapotranspiração de referência: Uma abordagem atual de diferentes métodos de estimativas. Pesquisa Agropecuária Tropical, v. 41, p. 456-465.

Debnath, D.S.; Adamala, S.; Raghuwanshi, N.S., 2015. Sensitivity Analysis of FAO-56 Penman-Monteith Method for Different Agro-ecological Regions of India. Environmental Processes. v. 2, p. 689–704.

Duarte, A.F., 2006. Aspectos da climatologia do Acre, Brasil, com base no intervalo 1971 – 2000. Revista Brasileira de Meteorologia, v. 21, p. 308-317.

Fan, Y. and Miguez-Macho, G., 2010. Potential groundwater contribution to Amazon evapotranspiration. Hydrology Earth System Sciences, v. 14, p. 2039–2056.

Fernandes, D.S.; Heinemann, A.B.; Amorim, A.O., 2010. Evapotranspiração – Uma Revisão sobre os Métodos Empíricos. Embrapa Arroz e Feijão, Santo Antônio de Goiás. (Documentos, 263).

Filho, L.C.A.L.; Carvalho, L.G.; Evangelista, A.W.P.; Alves Júnior, J., 2010. Análise espacial da influência dos elementos meteorológicos sobre a evapotranspiração de referência em Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 14, p. 1294-1303.

Frey, H.C. and Patil, S.R., 2002. Identification and review of sensitivity analysis methods. Risk Analysis, v. 22, p. 553-578.

Gavilán, P.; Berengena , J.; Allen, R.G., 2007. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions. Agricultural Water Management, v. 89, p. 275–286.

Gong, L.; XU, C-yu; Chen, D.; Halldin, S.; Chen, Y.D., 2006. Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of Hydrology, v. 329, p. 620–629.

Hervada-Sala, C. and Jarauta-Bragulat, E., 2004. A program to perform Ward’s clustering method on several regionalized variables. Computers & Geosciences, v. 30, p. 881-886.

Hoffmann, R., 2011. Estatística para economistas. 4ª Ed. rev. e ampl., São Paulo: Cengage Learning.

Horel, J.D.; Hahmann, A.N.; Geisler, J.E., 1989. An investigation of the annual cycle of convective activity over the tropical Americas. Journal of Climate, v. 2, p. 1388-1403.

IBGE. Instituto Brasileiro de Geografia e Estatística, 2010. Available: Access: fev., 15 2017.

Irmak, S.; Payero, J. O.; Martin, D. L.,; Irmak, A.; Howell, T. A., 2006. Sensitivity Analyses and Sensitivity Coefficients of Standardized Daily ASCE-Penman-Monteith Equation. Journal of Irrigation and Drainage Engineering, p. 564-578.

Itenfisu, D.; Elliot, R. L.; Allen, R. G.; Walter, I. A., 2003. “Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort.” Journal of Irrigation and Drainage Engineering, 129-6, p. 440–448.

Jovanovic, N. and Israel, S., 2012. Critical review of methods for the estimation of actual evapotranspiration in hydrological models. In: Irmak A (ed.) Evapotranspiration – Remote Sensing and Modelling. Intech, Rijeka, Croatia.

Junger, W. and Leon, A.P., 2012. MTSDI: Multivariate time series data imputation. R package 0.3.3.

Kannan, N; White, S.M.; Worrall, F.; Whelan; M.J., 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modeling in SWAT-2000. Journal Hydrology, v. 332, p. 456–466.

Liebmann, S.L.; Marengo, J.A.; Glick, J.D; Kousky, R.E.; Wainer, I.C; Massambani, O., 1998. Comparison of Long wave radiation, divergence and rainfall in the Brazilian Amazon basin. Journal of Climate, v. 7, p. 2898-2909.

Marengo, J.A; Nobre, C.A.; Culf, A.D., 1997. Climatic impacts of “Friagens” in forest and deforest areas of the Amazon basin. Journal Application Meteorological, v. 36, p. 1553-1566.

Marengo, J.A., 2009. Mudanças climáticas, condições meteorológicas extremas e eventos climáticos no Brasil. Mudanças climáticas e eventos extremos no Brasil. Fundação Brasileira para o Desenvolvimento Sustentável - FBDS, p. 4-18.

Marengo, J.A and Nobre, A.C., 2009. Clima da Região Amazônica. In: Cavalcante, I.F.A. et al. (Organizadores), Tempo e Clima no Brasil, São Paulo: Oficina de Texto, p. 200-207.

Marengo, J.A.; Fisch, G.; Morales, C.; Vendrame, I.; Dias, P.C., 2004. Diurnal variability of rainfall in Southwest Amazonia during the LBA-TRMM field campaign of the Austral summer of 1999. Acta Amazonica, v. 34, p. 593-603.

Marengo, J.A., 2005. The characteristics and variability of the atmospheric water balance in the Amazon basin: Spatial and temporal variability. Climate Dynamics, v. 24, p. 11-22, 2005.

Marengo, J.A., 2006. On the hydrological cycle of the Amazon basin: A historical review and current state-of-the-art. Revista Brasileira de Meteorologia, v. 21, p. 1-19.

Mimmack, G.M.; MASON, S.J.; GALPIN, J.S., 2001. Choice of distance matrices in cluster analysis: defining regions. Journal of Climate, v. 14, p. 2790-2797.

Mingoti, S.A. 2005. Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Belo Horizonte, Ed. UFMG, p. 155-211.

Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W., 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, v. 111, n. 4, p. 519–536.

Nobre, C.A.; Sellers, P.J.; Shukla, J., 1991. Amazonian Deforestation and Regional Climate Change. Journal of Climate, v. 4, p. 957-988.

Ometto, J.C., 1981. Bioclimatologia vegetal, 1 ed. Agronômica Ceres, São Paulo.

Paparrizos, S.; Maris, F.; Matzarakis, A., 2016. Sensitivity analysis and comparison of various potential evapotranspiration formulae for selected Greek areas with different climate conditions. Theoretical and Applied Climatology, v. 128, p. 745-159.

Pereira, M.A.F.; Kobiyama, M.; Castro, M.R., 2014. Análise de Variâncias Pluviométricas na Bacia Hidrográfica do Rio Taboão – RS. Revista Brasileira de Meteorologia, v. 29, p. 409-419.

Rocha, H.R.; Goulden, M.L.; Miller, S.D.; Menton, M.C.; Pinto, L.D.V.O.; Freitas, H.C.; Figueira, A.M. S., 2004. Seasonality Of Water And Heat Fluxes Over A Tropical Forest In Eastern Amazonia. Ecological Applications, v. 14, p. S22–S32.

Rocha, H.R.; Manzi, A.O.; Shuttleworth, J., 2009. Evapotranspiration. Amazonia and Global Change Geophysical Monograph Series, v. 186. p. 261-272.

Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, v. 20, p. 53-65.

Royston, P., 1982. An extension of Shapiro and Wilk's W test for normality to large samples. Applied Statistics, v. 31, p. 115–124.

Rubin, D.B., 1989. Multiple imputation after 18+ years. JASA, v. 91, p. 473-489.

Salati, E. and Marques, J., 1984. Climatology of the Amazon region, in The Amazon. Harald Sioli. Editora: Springer Netherlands, Boston, pp. 85-126.

Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S., 2008. Global Sensitivity Analysis. The Primer. Wiley & Sons, Chi-chester, United Kingdom.

Saltelli, A.; Tarantola, A.; Campolongo, F.; Ratto, M., 2004. Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models. John Wiley & Sons, Ltd.

Santos, E. B.; Lucio, P. S.; Silva, C. M. S., 2015. Precipitation regionalization of the Brazilian Amazon. Atmospheric Science Letters, v. 16, p. 195-192.

Sentelhas, P.C. and ANGELOCCI, L.R., 2009. Evapotranspiração – definições e conceitos. LCE 306 – Meteorologia Agrícola, ESALQ/USP.

Silva, B. K. N.; da Silva, V. P. R.; Azevedo, P. V.; Farias, C. H. A. 2011. Análise de sensibilidade dos métodos de estimativa da evapotranspiração de referência e razão de Bowen em cultura da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, p. 1046–1053.

Silva, H.J.F. 2015a. Análise de Tendência e caracterização sazonal e interanual da Evapotranspiração de Referência para o sudoeste da Amazônia Brasileira: Acre, Brasil. Natal, 2015. 107 p. Dissertação (Mestrado em Ciências Climáticas). Programa de Pós-Graduação em Ciências Climáticas, Universidade Federal do Rio Grande do Norte.

Silva, H.J.F.; Lucio, P.S.; Brown, I.F. 2015b. Análise mensal, sazonal e interanual da evapotranspiração de referência para o sudoeste da Amazônia, Acre, Brasil. Revista Brasileira de Geografia Física, v. 08, p. 1711-1729.

Trenberth, K.E.; Hurrel, J.W. 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, v. 9, p. 303-319, 1994.

Villa Nova, N.; Salati, E.; Matsui, E. 1976. Estimativa da evapotranspiração na bacia Amazônica. Acta Amazônica, v. 6, p.215-228.

Villar, J.C.E.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; de Oliveira, E.; Pombosag, R.; Vauchelh, P. 2009. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). International Journal of Climatology, v. 29, p. 1574-1594.

Yang, J. 2011. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis. Environmental Modelling & Software, v. 26, p. 444-457.

Zeng, N. 1999. Seasonal cycle and interannual variability in the Amazon hydrologic cycle, Journal Geophysics Research, v. 104, p. 9097–9106.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Indexadores / Base de Dados:


Google Scholar


Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202