

# Revista Brasileira de Geografia Física



ISSN:1984-2295

Homepage: www.ufpe.br/rbgfe

# Climatologia da precipitação na Amazônia

Bergson Cavalcanti Moraes. Instituto Tecnológico Vale. Autor correspondente. E-mail: bergson.moraes@vale.com
Giordani Rafael Conceição Sodré. Instituto Tecnológico Vale. E-mail: rafaelsodre2009@hotmail.com
Everaldo Barreiros Souza. Instituto Tecnológico Vale. E-mail: everaldo@itv.org
João Batista Miranda Ribeiro. Instituto Tecnológico Vale. E-mail: jbmr@ufpa.br
Luiz Gylvan Meira Filho. Instituto Tecnológico Vale. E-mail: luiz.gylvan@itv.org
Douglas Batista da Silva Ferreira. Instituto Tecnológico Vale. E-mail: douglas.silva.ferreira@vale.com
Juarez Ventura Oliveira. Instituto Tecnológico Vale. E-mail: juarez.vo@hotmail.com

Artigo submetido em 06/05/2015 e aceite em 28/12/2015.

#### RESUMO

Este artigo compara três bases de dados de precipitação: estimativas de satélite (TRMM-NASA), conjunto de dados gradeados de precipitação do CPC-NOAA, e dados observados de estações convencionais (INMET-MAPA), na Amazônia Oriental, abrangendo os setores das bacias hidrográficas do Amazonas, Tocantins/Araguaia e do Norte-Nordeste do Atlântico, com foco em padrões climatológicos sazonais. Os resultados mostraram coeficientes estatisticamente significantes tanto para as estimativas por satélite como para os dados observados, para a distribuição da precipitação sazonal, evidenciado melhores resultados durante os meses chuvosos (março a maio) em relação aos meses secos (setembro a novembro). Na Amazônia oriental, região do Brasil que tem uma baixa densidade de estações meteorológicas, os dois conjuntos de dados são capazes de reproduzir os aspectos regionais da variabilidade pluviométrica sazonal, e as estimativas do satélite TRMM são relativamente melhores que as do CPC, tanto na resolução espacial quanto temporal.

Palavras-chave: precipitação sazonal; Amazônia Oriental; climatologia regional.

# Climatology of seasonal rainfall in the eastern Amazon

#### ABSTRACT

This paper compares three precipitation databases: satellite estimates (TRMM-NASA), analyses (CPC-NOAA) and conventional raingauge-stations (INMET-MAPA) in eastern Amazon, encompassing sectors of different hydrological basins (Amazon, Tocantins/Araguaia and North-Northeast Atlantic) with focus on seasonal climatological patterns. The results showed statistically significant coefficients for both the satellite and analyzed data with reference to the observed data, so that the seasonal rainfall distribution evidenced better representations during rainy months (March to May) than dry months (September to November). In eastern Amazon, the portion of Brazil which has one of the lowest density of meteorological stations, both data sets are capable of reproducing the regional aspects of pluviometric variability, and the TRMM satellite estimates are relatively better than the CPC both in spatial and time resolution. Such knowledge on the comparison of meteorological data is important in several socio-economic activities in the region.

Keywords: Seasonal precipitation; eastern Amazon; regional climatology

#### Introdução

O conhecimento dos índices pluviométricos na região Amazônica é de fundamental importância para as mais variadas questões econômicas e sociais, além das atuais implicações no contexto da sustentabilidade, e consequentemente no equilíbrio dos ecossistemas do Brasil e do mundo.

No entanto, mesmo reconhecendo-se a importância deste tipo de observações e apesar dos avanços científicos e tecnológicos pelos quais os sistemas de medições meteorológicas passaram nos

últimos tempos, a Amazônia historicamente apresenta o problema de baixa densidade de pluviômetros e os dados representam somente uma pequena área localizada no entorno do instrumento, conforme ilustrado na Figura 1.

A Organização Meteorológica Mundial (OMM), em seu manual de regras e técnicas instrumental recomenda que a representatividade de uma estação meteorológica, em baixas latitudes e em regiões com o relevo não acentuado, não ultrapasse 200 km. Contudo, na Amazônia, existem diversas regiões sem informações meteorológicas

consistentes (Figura 1). Nessas regiões, apenas dados obtidos pela interpolação matemática de estações vizinhas, com distancias variando até 600 km estão disponíveis para a avaliação e uso nos setores da sociedade, especialmente na agricultura.

Cenário contrário ao recomendado pela OMM pode ser também observado em diversos municípios das regiões Sul e Sudeste do estado do Pará, área de destaque mundial nas atividades de mineração e agropecuária. Nesses municípios, as informações meteorológicas mais próximas localizam-se em distâncias superiores a 500 km e muitas vezes ultrapassam os 1200 km (Figura 1).

Situação semelhante ao do estado do Pará ocorre no Norte do estado do Mato Grosso, região de destaque mundial na produção de soja, além da totalidade dos estados do Amazonas, Roraima, Amapá, Rondônia e Acre.

Esse cenário de ausência de informação de precipitações, tanto quanto em forma de frequências como quantidade, na região da Amazônia oriental, tem limitado o aumento de produtividade agrícola familiar (Moraes et al, 2005), impactado negativamente a logística e transporte mineral, incrementado o uso não racional dos recursos naturais disponíveis localmente (De Souza et al, 2014), e dessa forma inviabilizando o conceito de sustentabilidade ecológica (Lima e Pozzobon, 2005).

Outro importante impacto da ausência de dados pluviométricos confiáveis, está no contexto do mais amplo entendimento da função da floresta tropical nas precipitações do sul e sudeste do Brasil, pois é sabido que as plantas retornam a umidade do ar através do processo de evapotranspiração. Essa umidade é então carregada pelo vento em direção aos Andes, que desvia para o Sudeste da América do Sul (Marengo, 2004). Assim, precipitações que ocorrem na bacia do Rio da Prata, incluindo sul do Brasil, potencialmente poderiam ter origem Amazônia (Marengo, 2004).

É importante ressaltar que essa região de estudo é apontada, pelo Programa das Nações Unidas para o Desenvolvimento (PNUD, 2013), por possui o maior percentual de pessoas ocupando o setor agrícola e também lidera o ranking de maior percentual de pobres.

Pretendendo vencer essas dificuldades, pesquisas têm sido feitas visando desenvolver metodologias para a produção de longas séries de dados meteorológicos que satisfaçam, de forma significativa, a ausência de dados meteorológicos, em escala espacial global e regional.

Na literatura estão disponíveis, basicamente, três métodos para construir bancos de dados meteorológicos espaciais. A interpolação de dados obtidos em estações (New et al., 1999; Legates e Willmott, 1990; Leemans e Cramer, 1990, Moraes et al., 2005), a técnica de reanálise (Kalnay et al., 1996; Uppala et al., 2005) e a combinação de dados de estações com o sensoriamento remoto (Xie e Arkin, 1997; Huffman et al., 1997; Kummerow et al., 1998).

Porém, segundo os autores, esses bancos de dados podem apresentar discrepâncias quando comparados, principalmente para regiões do planeta onde a confiabilidade dos dados observados é questionável, como é o caso da Amazônia.

Costa e Foley (1998) compararam seis bancos de dados de precipitação para a Amazônia, concluindo que, embora as médias de longo prazo para a região fossem semelhantes, os padrões espaciais e a variação temporal eram expressivamente diferentes. Entretanto Nóbrega et al. (2008), encontraram resultados satisfatórios para a região da Amazônia ocidental.

Tendo em vista o exposto, este trabalho tem como principal objetivo comparar e avaliar a distribuição espacial dos dados de precipitação de diferentes fontes, de forma regional e em alta resolução para a Amazônia oriental, com ênfase nas bacias hidrográficas.

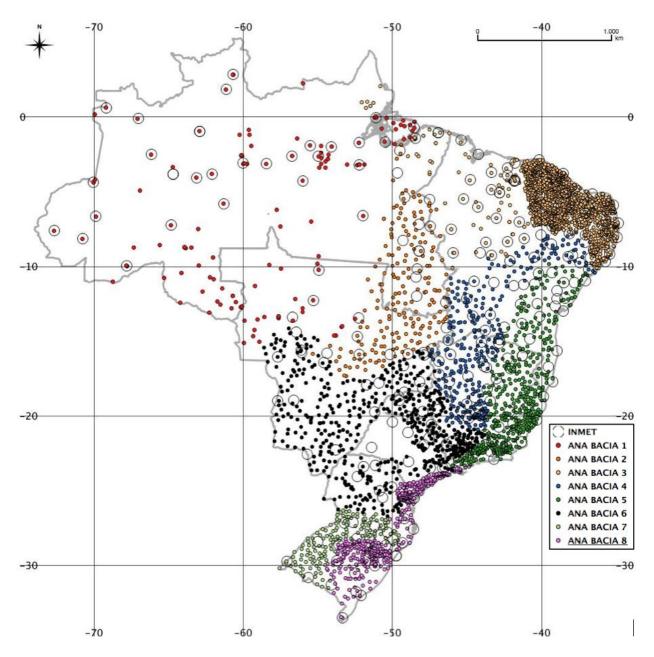



Figura 1. Distribuição espacial das estações meteorológicas convencionais do INMET (círculo vazado) e postos pluviométricos da ANA (círculo colorido por bacia hidrográfica) em cada região geográfica do Brasil.

#### Metodologia

A região da Amazônia oriental foi selecionada como área de estudo. A Figura 2 ilustra a localização da Amazônia Legal Brasileira, enquanto que a região retangular em destaque representa o domínio geográfico da área de estudo, incluindo as três bacias hidrográficas da região.

Essa interseção entre as bacias hidrográficas do Amazonas, Tocantins/Araguaia e do Atlântico norte/nordeste configura um cenário de transição, altamente heterogêneo do ponto de vista fisiógrafo e climático.

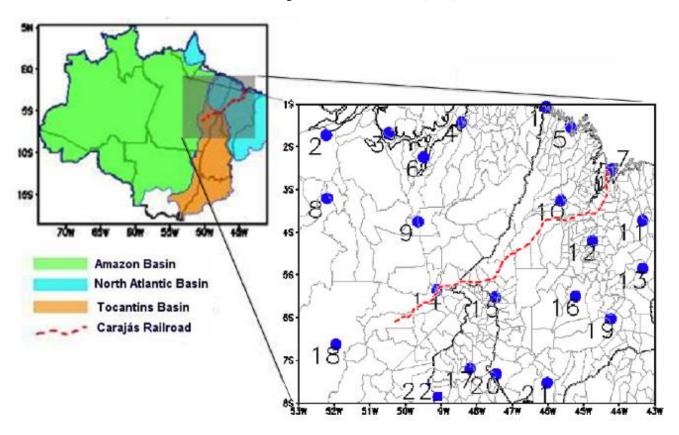



Figura 2. Localização da Amazônia com destaque para a área de estudo e bacias hidrográficas. Estações meteorológicas (pontos em azul numerados) e Estrada de Ferro Carajás (linha vermelha pontilhada).

## Base de Dados

Foram utilizadas três bases de dados com períodos semelhantes compreendidos entre os anos de 1998 a 2012.

#### Dados de estações convencionais

Foram utilizados dados climáticos de 22 estações meteorológicas de superfície provenientes do Instituto Nacional de Meteorologia (INMET), conforme Tabela 1 e Figura 2, que referenciam os

detalhes e a localização geográfica das estações usadas sobre a área de estudo.

Foram utilizadas também duas diferentes bases de dados de precipitação: as estimativas de chuva do satélite TRMM e as análises de precipitação do *Climate Prediction Center(CPC)* do NCEP-NOAA dos EUA, com a finalidade de fazer comparações com os dados das estações do INMET, que apesar da baixa densidade representam a verdadeira observação atmosférica na forma pontual.

Tabela 1. Listagem das estações meteorológicas do INMET usadas no estudo diagnóstico do clima regional para a precipitação.

| Número da | Código | Município             | Estado | Longitude | Latitude |  |
|-----------|--------|-----------------------|--------|-----------|----------|--|
| estação   | OMM    |                       |        | 1500      |          |  |
| 1         | 82145  | Tracuateua            | PA     | -46,90    | -1,06    |  |
| 2         | 82184  | Porto de Moz          | PA     | -52,23    | -1,73    |  |
| 3         | 82188  | Breves                | PA     | -50,48    | -1,68    |  |
| 4         | 82191  | Belém                 | PA     | -48,43    | -1,43    |  |
| 5         | 82198  | Turiaçu               | MA     | -45,36    | -1,56    |  |
| 6         | 82263  | Cametá                | PA     | -49,50    | -2,25    |  |
| 7         | 82280  | São Luís              | MA     | -44,21    | -2,53    |  |
| 8         | 82353  | Altamira              | PA     | -52,21    | -3,21    |  |
| 9         | 82361  | Tucuruí               | PA     | -49,66    | -3,76    |  |
| 10        | 82376  | Zé Doca               | MA     | -45,65    | -3,26    |  |
| 11        | 82382  | Chapadinha            | MA     | -43,35    | -3,73    |  |
| 12        | 82460  | Bacabal               | MA     | -44,76    | -4,21    |  |
| 13        | 82476  | Caxias                | MA     | -43,35    | -4,86    |  |
| 14        | 82562  | Marabá                | PA     | -49,13    | -5,36    |  |
| 15        | 82564  | Imperatriz            | MA     | -47,48    | -5,53    |  |
| 16        | 82571  | Barra do Corda        | MA     | -45,23    | -5,50    |  |
| 17        | 82659  | Araguaina             | TO     | -48,2     | -7,2     |  |
| 18        | 82668  | São Félix do Xingu    | PA     | -51,96    | -6,63    |  |
| 19        | 82676  | Colinas               | MA     | -44,25    | -6,03    |  |
| 20        | 82765  | Carolina              | MA     | -47,46    | -7,33    |  |
| 21        | 82768  | Balsas                | MA     | -46,03    | -7,53    |  |
| 22        | 82861  | Conceição do Araguaia | PA     | -49,26    | -8,26    |  |

Estimativa via sensoriamento remoto

A missão TRMM (Tropical Rainfall Measuring Mission) foi lançada em 1997, pela NASA em parceria com a JAXA (Agência Japonesa de Exploração Aeroespacial), com o objetivo de monitorar e estudar a precipitação tropical e em regiões subtropicais, além de verificar como a mesma influência o clima global.

O satélite TRMM fornece estimativas mais precisas do que as técnicas indiretas, baseadas em imagens de outros satélites (Barrera, 2005), sendo usado inclusive para validação destas técnicas, em função de ser mais bem equipado em termos de instrumentos para estimativa de precipitação.

A estimativa de precipitação do satélite é gerada por um sistema de calibração sequencial que inclui combinações de estimativas de precipitação derivadas de multi-satélites, bem como de dados gerados por estações pluviométricas (sempre que possível), com alta resolução espacial de 0,25° e temporal de 3 horas, por meio do algoritmo 3B43 do satélite (Huffman et al., 2007, Nobrega et al., 2008).

O TRMM realiza varreduras que se estendem desde 38°N a 38°S (Kummerow et al.,1998, 2000), e possui órbita oblíqua não-heliossíncrona baixa (cerca de 403 km) permitindo resoluções espacial e temporal altas. Os

instrumentos a bordo do TRMM são: imageador de microondas (TMI), radar de precipitação (PR), radiômetro no visível e no infravermelho (VIRS), sensor de energia radiante da superfície terrestre e das nuvens (CERES), e sensor para imageamento de relâmpagos (LIS).

Conjunto de dados em pontos de grade - CPC

Os dados de precipitação do CPC (Climate Prediction Center), centro pertencente ao NCEP (National Centers for Environmental Prediction), orgão da NOAA (National Oceanic and Atmospheric Administration), consistem em uma densa rede observacional ao redor do mundo interpolada em uma grade de 0,5° x 0,5° graus (aproximadamente 56 km).

Aqui no Brasil esses dados são provenientes do INMET (Instituto Nacional de Meteorologia), CPTEC (Centro de Previsão de Tempo e Estudos Climáticos), ANEEL (Agência Nacional de energia Elétrica), ANA (Agência Nacional de Águas) além dos diversos centros estaduais de meteorologia. Na geração desta base de dados utiliza-se um controle de qualidade e métodos de interpolação espacial descritos detalhadamente em Shi et al., (2000); Chen et al., (2008), sendo que alguns resultados sobre a

consistência destes dados foram reportados em (Carvalho et al. 2004; Silva et al. 2005).

Análise espacial e geoestatística

Para a análise espacial dos valores pontuais das estações convencionais, foram realizadas

interpolações utilizando o método do inverso do quadrado da distância (IDW), contido no módulo de interpolação de dados do software *Quantum Gis*, representado matematicamente pela equação 1 conforme Assad e Sano, (1998).

$$V_{x} = \frac{\sum_{i=1}^{n} \frac{V_{i}}{D_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{D_{i}^{2}}}$$
Equação 1

em que

 $V_x$  = valor estimado i;

 $V_i$  = valor medido na estação;

D<sub>i</sub> = distância entre o ponto e a estação;

n = número de estações usadas para estimativa de V<sub>x</sub>;

i = número da estação (variando de 1 a n).

Para análise estatística foi utilizada a rotina computacional *zonal grid statistics* contida no software *Quantum Gis*. Foi obtido o coeficiente de correlação linear de Pearson (**r**) com 99% de grau de significância, para cada bacia hidrográfica na resolução temporal trimestral conforme a equação

2. A partir dos resultados interpolados de **r**, obtidos para cada ponto matricial, foi extraído o valor médio dos **r** entre os dados das estações e as duas outras bases de informações (TRMM e CPC), em cada trimestre do ano, nas regiões das respectivas bacias hidrográficas.

$$r_{X, y} = \frac{\text{cov}(x, y)}{S_X S_Y}$$
 Equação 2

em que:

x e y = variáveis

S = desvio padrão

O período de resolução temporal trimestral foi determinado em sincronismo com os calendários de planejamento de operações das atividades de mineração e obras civis correlatas (Vale, 2014), assim como períodos de manejos de irrigação e drenagens agrícolas, que necessitam do

diagnóstico climatológico durante os períodos de solstícios de verão (Dezembro a Fevereiro – DJF) e inverno (Julho a Agosto- JJA), e também períodos de transição de Março a Maio – MAM e Setembro a Novembro – SON.

### Resultados

Aspectos climatológicos

A climatologia de precipitação do período de Dezembro a Fevereiro (DJF) é ilustrada na Figura 3 para as três bases de dados. Nesse período são observados os valores máximos de precipitação do trimestre, compreendidos entre 900 e 1200 mm na região central do estado do Pará e Ilha do Marajó (Figura 3a). Na parte central da área de estudo, desde o sudeste do Pará até o litoral do Maranhão, a distribuição de precipitação é mais uniforme com valores entre 600 e 900 mm. Os menores valores de precipitação nesse período são observados na região centro sul do estado do Maranhão com valores oscilando entre 400 a 600 mm.

Os dados do TRMM para DJF (Figura 3b) superestimam espacialmente as máximas precipitações para do período, incorporando outros municípios do norte do Pará nas áreas de máximas precipitações, enquanto com os dados do CPC (Figura 3c) as áreas de máximas precipitações (900 a 1200 mm) ficam restritas somente a uma pequena região do norte do Pará.

Na configuração espacial da climatologia de precipitação para o período de Março a Maio (MAM), representado pela Figura 4, são observadas as máximas precipitações de todo o período estudado, com valores entre 1200 a 1500 mm na região do litoral do estado do Pará, esse

volume deve-se principalmente à atuação da Zona de Convergência Intertropical, principal sistema meteorológico sazonal causador de precipitação na região amazônica (Ferreira et al., 2015).

Os menores valores para esse trimestre são observados no Sudeste do estado do Maranhão, com precipitações oscilando entre 300 e 400 mm (Figura 4a). Mais uma vez é notada a

superestimativa dos dados do TRMM (Figura 4b) em relação aos dados observacionais das estações na região Norte do estado do Pará. Para esse trimestre, os dados do CPC (Figura 4c), de uma forma geral, representaram melhor os dados das estações.

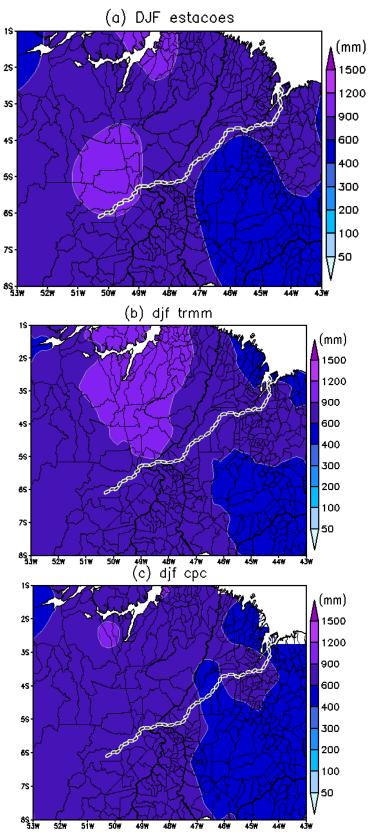



Figura 3: Variação espacial da precipitação nos meses de Dezembro, Janeiro e Fevereiro (DJF), via interpolação das estações meteorológicas do INMET (a), das estimativas do satélite TRMM (b), e do conjunto de dados gradeados do CPC (c). A linha tracejada representa a Estrada de Ferro Carajás.

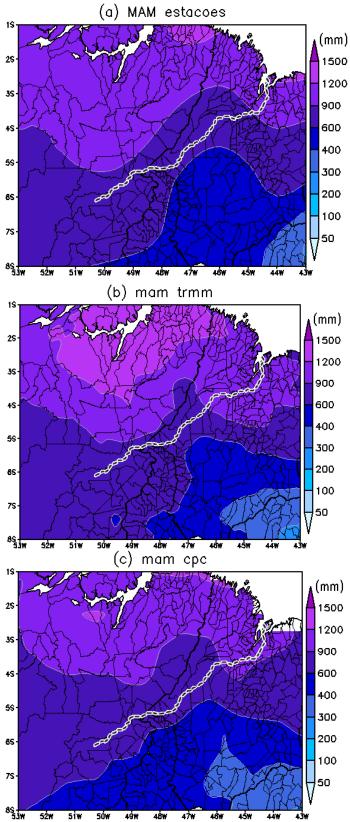



Figura 4. Variação espacial da precipitação nos meses de Março, Abril e Maio (MAM), via interpolação das estações meteorológicas do INMET(a), das estimativas do satélite TRMM(b), e do conjunto de dados gradeados do CPC (c). A linha tracejada representa a Estrada de Ferro Carajás.

Na Figura 5, verifica-se que durante o período menos chuvoso, caracterizado pelo trimestre de Junho a Agosto (JJA), a climatologia de precipitação apresenta um declínio abrupto na totalidade da região de estudo. Nesse período os maiores volumes de precipitação ao norte do estado do Pará, com valores entre 400 e 600 mm, devido a um avanço climatológico para norte ainda mais pronunciado da Zona de Convergência Intertropical.

Os volumes mínimos não excedem os 50 mm na porção centro-sul do estado do Maranhão (Figura 5a). Os dados do TRMM apresentam volumes máximos superiores aos das estações, com valores oscilando entre 600 a 900 na região metropolitana de Belém e Ilha do Marajó (Figura 5b), enquanto que os dados do CPC (Figura 5c) representam com maior exatidão a variação espacial da precipitação na região, tomando-se como referência a interpolação baseada nas estações convencionais do INMET.

No trimestre compreendido entre Setembro a Novembro - SON (Figura 6) os maiores volumes de precipitação são observados na porção sudoeste da região de estudo, ou seja, na divisa entre os estados do Pará, Maranhão e Tocantins, com valores oscilando entre 400 a 600 mm de precipitação (Ferreira at al., 2015) (Figura 6a).

As correlações entre os dados das estações e as outras duas bases de dados estudadas são apresentadas na Tabela 2. De uma forma geral, os dois métodos apresentaram-se bastante significativos (p>99%), com  $R^2$  superiores a 0,75, com exceção do CPC, para a Bacia do Atlântico norte/nordeste, no período de setembro a novembro, com  $R^2$ =0,680. Os coeficientes superiores do TRMM também foram observados na média anual, com  $R^2$ =0,863 enquanto que o CPC apresentou  $R^2$ =0,803.

O TRMM apresentou melhores resultados em todos os períodos e bacias hidrográficas analisadas. Sazonalmente os melhores resultados do TRMM foram observados no trimestre JJA, com  $R^2$ =0,927. Nesse mesmo período os coeficientes do CPC apresentaram os menores resultados, com  $R^2$ =0,707.

Segundo Carvalho et al., (2002) e Carvalho et al., (2004), esses elevados volumes de precipitação são provenientes da atuação da Zona de Convergência do Atlântico Sul (ZCAS), caracterizada por uma banda de precipitação e nebulosidade que se estende desde a Amazônia até o sudeste do Brasil em direção ao oceano Atlântico.

Os menores volumes de precipitação são observados na região norte do estado do Maranhão, com valores em torno de 50 mm. Nesse período (SON), tanto os dados do TRMM (Figura 6b) quanto os dados do CPC (Figura 6c) representaram de forma satisfatória a variação espacial da precipitação na região, apesar de um intenso núcleo de precipitação estimado pelo TRMM em parte da ilha do Marajó.

Entretanto, a característica de captar chuvas mais convectivas pode influenciar na menor área de abrangência de precipitação na área sudoeste do mapa estimada pelo TRMM, pois nesta época do ano o corredor de umidade que já se forma entre Amazônia e região central do País muitas vezes é caracterizado por precipitações de natureza estratiforme, cujos acumulados ficaram melhor evidenciados na espacialização da pluviométrica obtida com as estações do INMET e com a análise gradeada do CPC.

Correlação entre as bases de dados de precipitação Bacia hidrográfica que é melhor estimada pelos métodos, na Amazônia Oriental, é a Bacia do Amazonas, com R<sup>2</sup>=0,859, sendo a Bacia do Atlântico norte/nordeste a que apresentou os menores coeficientes, com R<sup>2</sup> médio de 0,786.

Os dados do CPC apresentaram resultados inferiores aos do TRMM, que certamente foram consequências da menor resolução espacial e temporal dos dados. Essa característica ocasionou perdas nas informações observadas nas estações meteorológicas, subestimando os dados locais das estações.

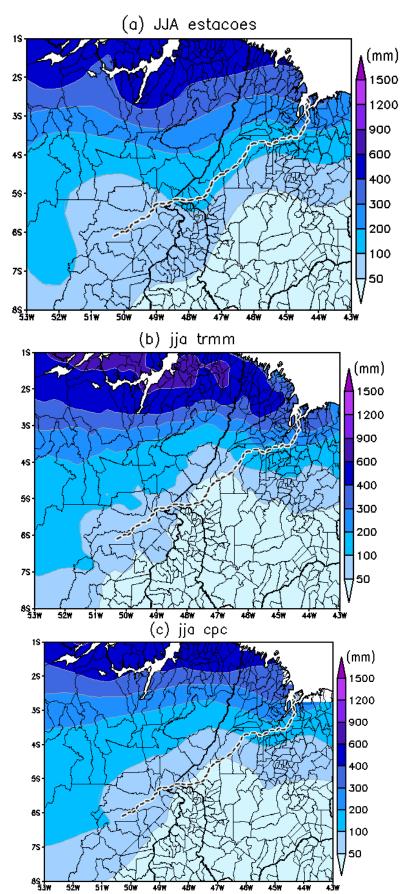



Figura 5. Variação espacial da precipitação nos meses de Junho, Julho e Agosto (JJA) via interpolação das estações meteorológicas do INMET(a), das estimativas do satélite TRMM(b) e do conjunto de dados gradeados do CPC (c). A linha tracejada representa a Estrada de Ferro Carajás.

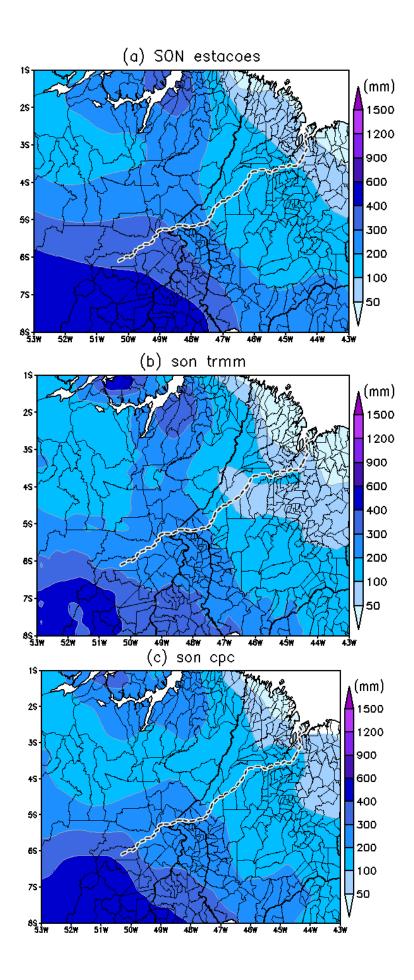



Figura 6. Variação espacial da precipitação nos meses de Setembro, Outubro e Novembro (SON), via interpolação das estações meteorológicas do INMET(a), das estimativas do satélite TRMM (b) e do conjunto de dados gradeados do CPC (c). A linha tracejada representa a Estrada de Ferro Carajás.

Tabela 2. Coeficientes de determinação entre os resultados de precipitação observados pelo INMET e os dois outros métodos avaliados (TRMM e CPC), para o período de 1998 a 2012.

|                    | Trimestre |       |       |       |       |       |       |       |       |  |
|--------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                    | DJ        | F     | MA    | MAM   |       | JJA   |       | SON   |       |  |
| Bacias             | TRMM      | CPC   | TRMM  | CPC   | TRMM  | CPC   | TRMM  | CPC   |       |  |
| Amazonas           | 0,900     | 0,790 | 0,930 | 0,820 | 0,960 | 0,800 | 0,860 | 0,710 | 0,859 |  |
| Tocantins/Araguaia | 0,830     | 0,820 | 0,880 | 0,770 | 0,920 | 0,800 | 0,860 | 0,730 | 0,826 |  |
| Atlântico          | 0,840     | 0,750 | 0,880 | 0,750 | 0,900 | 0,790 | 0,740 | 0,680 | 0,786 |  |
| norte/nordeste     |           |       |       |       |       |       |       |       |       |  |
| Média TRMM         | 0,857     | _     | 0,897 | _     | 0,927 | _     | 0,820 | _     | 0,873 |  |
| Média CPC          | _         | 0,787 | _     | 0,780 | _     | 0,797 | _     | 0,707 | 0,792 |  |

#### Discussão

Os dados do TRMM apresentaram superestimativa espacial nos volumes de precipitação, com exceção do trimestre SON. Estes resultados são concordantes com pesquisas anteriores (Rozante et. al., 2010; Collischonn, et. al., 2007; Nóbrega, et. al., 2008), que observaram superestimativas de resultados do TRMM em regiões continentais, enquanto que no Nordeste do Brasil ocorreu subestimativa.

Dessa forma, todos estes resultados, incluindo o presente trabalho, sugerem que a quantidade de nuvens quentes, ou seja, nuvens típicas das regiões tropicais, principalmente em regiões costeiras, e nas quais não se observam partículas de gelo, interferem negativamente nas estimativas de precipitação pelo algoritmo 3B43. Entretanto o hidroestimador é eficientemente capaz de caracterizar a variabilidade sazonal de precipitação, na região oriental da Amazônia, para os diversos fins da sociedade.

### Conclusões

Os dados do CPC e TRMM estimam de forma satisfatória as precipitações na Amazônia oriental em escala temporal trimestral. Ambas as metodologias apresentaram coeficientes de determinação superiores a 0,79 quando comparadas aos dados observados.

# Agradecimentos

Ao Instituto Nacional de Meteorologia-INMET, Climate Center Prediction- NOAA e TRMM-NASA pela concessão dos dados utilizados no presente trabalho.

#### Referências

A Bacia hidrográfica onde a precipitação é melhor estimada é a Bacia do Amazonas, seguida pela Bacia do Tocantins/Araguaia e por último a Bacia do Atlântico norte/nordeste, com R<sup>2</sup> de 0,859; 0,826 e 0,786 respectivamente.

Uma provável explicação para a Bacia do Atlântico norte/nordeste apresentar baixos valores do coeficiente de determinação, principalmente no período SON, deve-se ao fato das diferentes atuações dos diversos mecanismos meteorológicos, produtores de precipitação em regiões costeiras na Amazônia.

Finalmente, fica explicito que as informações provenientes de técnicas de sensoriamento remoto apresentam-se como uma alternativa bastante satisfatória para a aquisição de informações de precipitação na região da Amazônia oriental, que conforme descrito anteriormente é caracterizada como carente dessas informações em diversos municípios.

Entretanto, vale ressaltar que o presente trabalho foi realizado apenas para uma determinada grade espacial, o que limita a extrapolação da confiabilidade dessas bases de dados para outras regiões de interesse, sem estudos prévios para quantificação da acurácia das informações. Para tanto, sugere-se que estudos semelhantes com alta resolução espacial sejam realizados para outras regiões, objetivando informações alternativas as das estações meteorológicas.

Assad, E. D., Sano, E. E. (orgs.) 1998. Sistema de Informações Geográficas: aplicações na agricultura. 2. ed. Brasília: Embrapa – SPI/Embrapa– CPAC, 434 p.

Carvalho, l.m.v.; c. Jones; b. Liebmann. 2002. Extreme precipitation events in southeastern South America and large-scale convective

- patterns in the South Atlantic convergence zone. J. Climate 15, 2377-2394.
- Carvalho, L. M. V., Jones, C., Liebmann, B. 2004. The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate 17, 88-108.
- Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, And J. E. Janowiak, 2008: Assessing objective techniques for gauge based analyses of global daily precipitation. J. Geophys. Res. 113, D04110.
- Collischonn, B., Allasia, D., Collischonn, W., Tucci, C. E. M. 2007. Desempenho do satelite TRMM na estimativa de precipitação sobre a bacia do Paraguai superior. Revista Brasileira de Cartografia 59, 93-99.
- Costa, M. H., J. A. Foley. 1998. A comparison of precipitation datasets for the Amazon basin. Geophysical research letters 25, 155-158.
- De Souza, E. B., Moraes, B. C., Ferreira, D. B. S., Meira Filho, L. G. 2014. Dynamical Donwscaling for Railroad Areas in Eastern Amazon and Southeastern Brazil: Current Climate and Near-Future Projections. Atmospheric and Climate Sciences 4, 155-163.
- Lima, D., Pozzobon J. 2005.Amazônia socioambiental. Sustentabilidade ecológica e diversidade social. Estudos Avançados 19, 45-76.
- Programa das Nações Unidas para o Desenvolvimento (PNUD). 2013. Índice Do Desenvolvimento Humano Municipal Brasileiro. Atlas do Desenvolvimento Humano no Brasil. Rio de Janeiro, Dezembro de 2013. Disponível em: <a href="http://www.pnud.org.br/arquivos/idhm-brasileiro-atlas-2013.pdf">http://www.pnud.org.br/arquivos/idhm-brasileiro-atlas-2013.pdf</a>
- Huffman G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., Wolff, D. B. 2007. The TRMM Multi-satellite Precipitation Analysis: Quasiglobal, multi-year, combined-sensor precipitation estimates at fine scale. Journal of Hydrometeorology 8, 38-55.
- Huffman, George J., Robert F. Adler, Philip Arkin, Alfred Chang, Ralph Ferraro, Arnold Gruber, John Janowiak, Alan McNab, Bruno Rudolf, and Udo Schneider, 1997: The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Amer. Meteor. Soc. 78, 5–20. doi: <a href="http://dx.doi.org/10.1175/1520-0477(1997)078</a>
  http://dx.doi.org/10.1175/1520-0477(1997)078

- Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, Roy Jenne, and Dennis Joseph, 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 77, 437–471. doi: <a href="http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2">http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2</a>
- Kummerow, C.; Simpson, J.; Thiele, O. 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology 39, 1965-1982.
- Kummerow, C., Barnes, W., Kozu, T., Shine, J.,
  Simpson, J. 1998. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. Journal of Atmospheric and Oceanic Technology 15, 809-817. DOI:10.1175/1520-0426.
- Leemans, R., Cramer, W. P. 1990. The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. IIasa Working papers, WP-90-41, Laxenburg, Austria.
- Legates, D. R., Willmott, C. J. 1990. Mean seasonal and spatial variability in gauge-corrected, global precipitation. International Journal of Climatology 10, 111-127.
- Lorenz, E. N. 1969. The nature and theory of the general circulation of atmosphere. World meteorological organization, n. 218, Geneva.
- Moraes, B. C., Costa, J. M. N., Costa, A. C. L. 2005. Variação espacial e temporal da precipitação no estado do Pará. Acta Amazônica 35, 207-214.
- Nóbrega, R. S., Souza, E. P., Galvíncio, J. D. 2008. Análise da estimativa de precipitação do TRMM em uma sub-bacia da Amazônia Ocidental. Revista de Geografia 25, 6-20.
- New, M., Hulme, M., Jones, P. 1999. Representing twentieth century spacetime climate variability. Part 1: development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate 12, 829–856.
- VALE, 2014. Relatórios trimestrais: planejamento, resultado e produção. Disponível em <a href="http://www.vale.com/brasil/PT/investors/annual-reports/">http://www.vale.com/brasil/PT/investors/annual-reports/</a>>. Acesso em 28 janeiro. 2015.
- Rozante, J. R., Moreira, D. S., Gonçalves, L. G. G., Vila, D. 2010. Combining TRMM and surface observation of precipitation: technique and validation over South America. Weather and Forecasting 25, 885-894. doi: <a href="http://dx.doi.org/10.1175/2010WAF22223">http://dx.doi.org/10.1175/2010WAF22223</a> 25.1

- Shi, W., Higgins, R. W., Yarosh, E., Kousky, V. E. 2000. The annual cycle and variability of precipitation in Brazil. Ncep/Climate Prediction Center. U.s. department of commerce, noaa/nws, atlas n. 9.
- Silva, V., Kousky,V., Shi,W., Higgins,W. Improved CPC gridded Historical Daily precipitation Analyses Over Brazil. In: 30th Annual Climate Diagnostics & Prediction
- Workshop. The Pennsylvania State University USA, October 24-28,P3.16,2005.
- Uppala, S. M. *et al.* 2005. The ERA-40 re-analysis. Quarterly Journal of the royal meteorological society 131, 2961-3012, doi:10.1256/qj.04.176.
- Xie, P., Arkin, P. A. 1997.Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society 78, 2539-2558.