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A B S T R A C T 
Trees affect the microclimate, which influences thermal comfort and ecosystem processes. This study investigated the 

influence of the canopy cover on daily maximum and minimum temperatures. The data are from a collaborative database, 

and each measurement consists of the minimum and maximum temperatures under the canopy and in an open adjacent 

area over a 24-hour period. Paired sample t-tests indicated that the canopy decreased the maximum and minimum daily 

temperatures and narrowed the daily temperature range. Multiple regression showed that the canopy cover percentage 

decreased the maximum daily temperatures, and this effect was greater in rural areas than in urbanized areas. Another 

multiple regression indicated that the canopy cover percentage and the distance to the edge of the canopy decreased the 

daily temperature range. An independent sample t-test also indicated that the effect of the canopy on the daily temperature 

range was higher in rural areas when analysed by parametric and non-parametric tests but not when measured by a robust 

test. Other independent sample t-tests indicated that the distance from a light source also decreased the canopy effect on 

the minimum daily temperature and the daily temperature range. The main plausible underlying processes include the 

canopy shade and wind insulation, litter insulation of the ground surface, heat pumps through evapotranspiration and 

lateral heat fluxes from light bulbs and other anthropogenic sources, especially in urbanized areas. These results provide 

a greater understanding of the effects of arborization in rural and urban ecosystems, as well as their respective benefits to 

human communities. 
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Introduction 

Vegetation creates microclimates that are 

distinct from open environments. The vegetation 

acts as a windbreak, affecting the heat transfer and 

transpiration of living beings (Smith and Jarvis, 

1998). Plant transpiration also increases humidity 

and transforms some of the solar radiation as latent 

heat, which contributes to tissue cooling (Gowing 

et al., 2008). Canopy and canopy litter have 

different albedos than that of bare soil, and they 

prevent direct solar radiation from reaching the 

ground surface. All these changes can affect the 

local niches of ecosystems and, furthermore, could 

be important when planning for more effective 

thermal comfort in environments inhabited by 

humans. 

Maximum and minimum temperatures are 

important factors used by plants and other living 

beings to control their seasonal cycles (i.e., 

phenology), such as blossoming and leaf 

senescence (Ricklefs and Relyea, 2019). Many 

enzymes and biological processes within living 

beings also have tolerance ranges and optimal 

points regarding environment temperature (Brown 

et al., 2004). Therefore, the microclimates in open 

areas and in areas under canopy cover may offer 

distinct conditions in terms of ecosystem 

development. Along the process of ecological 

succession, the development of larger trees with a 

thicker canopy would then change the 

environmental conditions for different living 

beings in the ecosystem. 

These effects of tree cover on temperature 

are also important when planning better thermal 

comfort zones in green areas, such as parks, 

squares and gardens. Tree shade can be a good 
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refuge for people and other animals during periods 

of hot temperatures, such as heat waves. Planning 

that includes access and equipment (i.e., seats and 

tables) under trees may add even more value to the 

ecosystem services of these green areas (Tyrväinen 

et al., 2005). Additionally, the current trend of 

global warming may increase the importance of the 

ecological services provided by trees in human-

inhabited areas (Salmond et al., 2016). 

The objective of this study was to 

investigate the relationships between the canopy 

cover and variations in the surface temperature. 

These relationships are investigated through the 

analysis of mean difference tests and multiple 

regression. The main underlying process under 

investigation is the reduction in direct solar 

radiation caused by canopy cover, and the primary 

hypothesis assumes that the canopy decreases the 

maximum and minimum daily ground 

temperatures, as well as the daily temperature 

range, at the microclimate scale. 

 

Materials and Methods 

Data Collection 

The Open University of the United 

Kingdom organized a collaborative data 

measurement project that collected data from 

different places around the world between 29 

October and 14 December 2016. In total, the 

collaborators obtained 363 measurements, each 

consisting of the maximum and minimum surface 

temperatures in an open area and an area under the 

canopy (i.e. 1 metre from the trunk) during a 

continuous 24-hour period. Each collaborator used 

two Tmin/Tmax thermometers to record the 

maximum and minimum air temperatures at the 

surface level, unshielded and unaspirated (i.e. 

measurement under natural ventilation).  

Most measurements (91.5%) were 

collected in the United Kingdom; however, 6.3% 

of measurements were collected in other European 

countries, and 2.2% were collected elsewhere in 

the world (including four sites in the Southern 

Hemisphere) (Figure 1). Therefore, while the 

deciduous and semi-deciduous trees in the 

Northern Hemisphere were in the process of losing 

their leaves during autumn, the deciduous and 

semi-deciduous trees in the Southern Hemisphere 

were sprouting their new leaves during spring. 

 

 

 
Figure 1. Location of the measurements  

 

The possible influencing environmental 

factors were noted on a standardized data sheet, 

which is available as a supplement to this article. 

Canopy cover was estimated using a reference 

sheet (Vasconcelos (2021a). Canopy cover was 

estimated in intervals of 10%, and the values were 

transformed into a canopy index that represented 

the mid-values of each interval. Each collaborator 

was instructed to select trees that were located as 

far as possible from buildings and light sources 

(preferably 20 metres or more). Additionally, 

collaborators were instructed to select trees that 

were mature and had well-formed deciduous 

canopies. Davies and Gowing (2016) described the 

prescribed methods for collection and analysis in 

more detail. After collection, the data were 
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synthesized by The Open University team and then 

returned to the collaborators, who could then 

perform their own statistical analysis. 

There was also a prescribed list of tree 

species, which included the following, in order of 

preference: Quercus robur (pedunculated oak, 

comprising 56.7% of the trees), Quercus petraea 

(sessile or durmast oak, comprising 19.3%), other 

oaks (8%), other deciduous trees (13.2%), other 

trees (1.7%) and other shrubs (1.1%, including 

woody plants with no clear trunk and foliage within 

0.5 m of the ground). The preference was given to 

oak species because they retain their leaves for a 

longer period of time in autumn, providing more 

uniformity within the measurement period. The 

ground coverage also followed a prescribed 

preference: grass (53.1%), litter (20.8%), 

undergrowth (17.5%), bare soil (7.1%) and 

artificial surface (1.5%). Among other 

environmental variables, the collaborators noted 

whether the environment was rural (44.6%) or 

urban (55.4%, which included villages and 

suburban areas), the geographical coordinates, the 

distance from the thermometer under the canopy to 

the edge of the canopy, and the distance to the 

nearest light source. 

 

Modelling Framework 

This article follows a theoretical 

framework that is based on King and Roberts 

(2014); specifically, rather than selecting what 

would be the best model among conventional 

parametric, robust or non-parametric alternatives, 

these modelling approaches could be interpreted as 

complementary perspectives of the same 

phenomena under analysis. Therefore, if similar 

patterns emerged from these distinct modelling 

approaches that used the same database, there was 

stronger evidence that these patterns were valid. On 

the other hand, if there was significant 

disagreement among these distinct modelling 

approaches, it was usually an indicator that there 

was a need for further analysis and modelling 

improvement. The significance values (p-levels) 

were interpreted in conjunction with the effect 

sizes, as proposed by Henson and Smith (2000). 

The power was evaluated using the 

recommendations of Hair et al. (2018) when 

measuring the risk of type II errors. 

The individual daily maximum and 

minimum temperature measurements would 

undoubtedly diverge because the collaborators 

collected data from various locations under distinct 

weather and other environmental conditions. To 

address this variation, a paired analysis was used to 

compute temperature differences between each 

pair of open area and canopy cover measurements. 

The difference between the maximum and 

minimum temperatures in the open area and the 

area under the canopy was calculated using 

Equations 1 and 2, respectively. The difference 

between the temperature range in the open area and 

the area under the canopy, termed D, was 

calculated using Equation 3. Table 1 presents these 

three equations.  

 

Table 1 - Equations used to calculate differences in maximum temperature, minimum temperature and 

temperature range in the open area and the area under the canopy  

Equation 

number 

Variable (result) Equation (calculus) 

1 Difference between maximum temperatures in 

the open area and the area under the canopy 

Tmaxopen – Tmaxcanopy 

2 Difference between minimum temperatures in 

the open area and the area under the canopy 

Tminopen – Tmincanopy 

3 Difference between temperature range in the 

open area and the area under the canopy (D) 

(Tmaxopen – Tminopen) - (Tmaxcanopy – 

Tmincanopy) 
where Tmaxopen is the maximum temperature in the open area; Tminopen is the minimum temperature in the open area;  Tmaxcanopy is 
the maximum temperature under the canopy; and Tmincanopy is the minimum temperature under the canopy.  
 

A paired t-test was conducted to evaluate 

the overall effect of the tree canopy on the three 

variables listed in Table 3. The parametric 

assumption of normality was verified using the 

Shapiro and Wilk (1965) W test. The assumption 

of homogeneity of variance was checked using 

Levene’s (1960) test. The significance of the paired 

t-test was re-checked using the Yuen (1974) robust 

paired t-test on 20% trimmed means and the 

Wilcoxon (1945) non-parametric signed rank test 

with continuity correction. 

In addition to significant differences 

obtained in the t-tests, two multiple linear 

regression analyses were performed to understand 

the effects of possible causes on these processes. 

One multiple regression evaluated the effect of the 

percentage of canopy cover and urbanization (i.e., 

the independent variables) on the difference in the 
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maximum temperature values (i.e., the dependent 

variable). Urbanization was coded as a dummy 

variable (rural = 1, urban = 0). 

The other multiple regression analysis 

evaluated the effects of the canopy index and the 

distance to the edge of the canopy (i.e. independent 

variables) on D (i.e. a dependent variable). Non-

linear relationships were verified between the 

independent and dependent variables. The residual 

autocorrelation was verified using the Durbin and 

Watson (1971) test. The homoscedasticity was 

evaluated using the score test for non-constant 

error variance of Breusch and Pagan (1979). 

Multicollinearity was evaluated by the variance 

inflation factor (VIF), according to the guidelines 

of Hair et al. (2018) The outliers were evaluated by 

counting the cases in which Cook’s distance was 

higher than 1, as advised by Cook and Weisberg 

(1982), and the number of hat (i.e., leverage) values 

that were higher than 3(k+1)/n, where k is the 

number of parameters and n is the number of cases, 

as advised by Pituch and Stevens (2015). In 

addition to the conventional ordinary least squares 

(OLS) method, the multiple linear regressions were 

evaluated using the robust standard deviations 

(White,1980), the robust iterated reweighted least 

squares (IRWLS) with a method-of-moments 

(MM) estimator (Yohai and Zamar, 1988; Koller 

and Stalhel, 2011), and the non-parametric quantile 

regression (Koenker and Bassett, 1978) with 

pseudo-R2 (Cragg and Uhler, 1970; Nagelkerke, 

1991). The MM-estimator for IRWLS was 

preferred over the M-estimator (Holland and 

Welsch, 1977) because it can generate robust R2 

and significance values (Renaud and Victoria-

Feser, 2010), which makes it easier to compare the 

results with those of the other modelling 

approaches. 

Three independent sample t-tests, with the 

Welch (1938) adjustment for heterogeneity of 

variance, were conducted to evaluate the effects of 

urbanization and the distance from light sources on 

the independent variables. The analogous 

diagnostics as well as the robust (with 

bootstrapping) and non-parametric tests used in the 

paired samples were also used in the independent 

sample t-tests. The goal of performing the 

independent t-tests was to separately evaluate the 

effects of potential explanatory variables whose 

coefficients were not significant when incorporated 

into the multiple regression analyses together with 

other variables. 

The null and alternate hypotheses for each 

model are described in Table 2. The parametric 

assumptions of each model were tested, and the 

statistical significance of the results was double-

checked using robust and non-parametric 

alternatives. The code in R used for the statistical 

analysis and the respective datasets are provided 

respectively in Vasconcelos (2018) and 

Vasconcelos (2021b). 

 

Table 2 - Null and alternative hypotheses analysed in this article 

Models Variable H0 (null hypothesis) H1 (alternate hypothesis) 

Paired 

sample  

t-tests 

Tmaxopen – 

Tmaxcanopy 

Tree canopy has no effect on daily 

maximum temperature 

Tree canopy changes daily maximum 

temperature 

Tminopen – 

Tmincanopy 

Tree canopy has no effect on daily 

minimum temperature 

Tree canopy changes daily minimum 

temperature 

D 
Tree canopy has no effect on the 

daily temperature range (D) 

Tree canopy changes daily 

temperature range (D) 

Multiple 

regressions 

Tmaxopen – 

Tmaxcanopy 

The canopy cover and urbanization 

have no effect on the difference 

between the daily maximum 

temperatures in the open area and 

the area under the canopy  

The canopy cover and urbanization 

affect the difference between the 

daily maximum temperatures in the 

open area and the area under the 

canopy 

D 

The canopy cover and distance from 

the edge of the canopy have no 

effect on the difference between the 

daily temperature ranges (D) in the 

open area and the area under the 

canopy 

The canopy cover and distance from 

the edge of canopy affect the 

difference between the daily 

temperature ranges (D) in the open 

area and the area under the canopy 

Independent 

sample  

t-tests 

Tminopen – 

Tmincanopy 

The distance from the light source 

has no effect on the difference 

between the daily minimum 

The distance from the light source has 

an effect on the difference between 

the daily minimum temperatures in 
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temperatures in the open area and 

the area under the canopy 

the open area and the area under the 

canopy 

D 

The distance from the light source 

has no effect on the difference 

between the daily temperature 

ranges (D) in the open area and the 

area under the canopy 

The distance from the light source has 

an effect on the difference between 

the daily temperature ranges (D) in 

the open area and the area under the 

canopy 

The urbanization has no effect on 

the difference between the daily 

temperature ranges (D) in the open 

area and the area under the canopy 

The urbanization has an effect on the 

difference between the daily 

temperature ranges (D) in the open 

area and the area under the canopy 

 

 

Results 

Table 3 shows the results of the paired t-

tests. The Shapiro-Wilk normality test on the three 

variables shown in Table 1 were significant with 

99.9% confidence, indicating that the data were 

significantly different from that of a normal 

distribution. However, even if the sample size was 

large enough to generate a normal distribution 

based on the central limit theorem, Table 3 also 

presents the p-values for the robust and non-

parametric alternatives to the paired sample tests. 

Levene’s test also showed that, at least for D, the 

variance in the open area and the area under the 

canopy was significantly distinct, violating another 

parametric assumption. Nevertheless, the p-values 

of the parametric, non-parametric and robust tests 

for the three variables were significant at the 99% 

confidence level. The areas under the canopy 

exhibited lower maximum and minimum daily 

temperatures and presented narrower daily 

temperature ranges. Nevertheless, the average 

difference and effect size (i.e., the Cohen “d”) of 

the daily maximum temperatures were lower than 

those of the other two variables. 

Tables 4 and 5 present the data for the 

multiple regressions of the two formulas 

(Tmaxopen – Tmaxcanopy and D as dependent 

variables). The two formulas were significant at the 

99.9% confidence level using OLS (including the 

robust standard deviation correction) and IRWLS, 

and the formulas were significant at the 99% 

confidence level using quantile regression. The 

coefficients of the dependent variables were also 

significant at the 95% confidence for OLS (even 

including the robust standard deviation correction), 

IRWLS and quantile regression. However, all 

models had very low R2 values, from 3.3% to 5.9%, 

indicating that there may have been many other 

environmental factors influencing the behaviour of 

the temperature both under the canopy and in the 

open. The Durbin-Watson tests with W values near 

2 indicated that autocorrelation between residuals 

would not adversely affect the outcome of either 

model. The VIF also indicated low 

multicollinearity for both models. However, the 

Breusch-Pagan test showed that the hypothesis of 

homoscedasticity of the residuals was not 

significant for both models; thus, paying special 

attention to the robust and non-parametric models 

is recommended. 

For each additional 1% of canopy cover, 

the difference between the maximum daily 

temperatures in the open area and the area under 

the canopy increased by 0.026°C (OLS), 0.016°C 

(IRWLS), or 0.012°C (quantile regression). 

Therefore, a tree with 95% canopy cover would 

have a maximum daily temperature that was 

2.94°C (OLS), 1.52°C (IRWLS), or 1.14°C 

(quantile regression) lower than that in the adjacent 

open areas. In rural areas, the difference between 

the maximum daily temperatures in the open area 

and the area under the canopy was 0.782°C (OLS), 

0.937°C (IRWLS), or 0.675°C (quantile 

regression) higher than those in the urban areas. 

Comparing the standardized coefficients, the 

canopy cover had more influence than did 

urbanization on the difference between the 

maximum daily temperatures in the open area and 

the area under the canopy using OLS (even 

including the correction for robust standard 

deviation); however, the relative influence of 

urbanization was higher using quantile regression 

and even higher using IRWLS. In OLS, there were 

no outliers identified by the Cook’s distance 

method; furthermore, only one outlier was 

identified using the leverage values, and it had a 

small influence (0.8%) relative to all the leverage 

values of the model. 
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Table 3 - Paired sample t-tests 

Paired sample t-test 

Average 

difference 

(°C) 

Levene 

test (p) 

Shapiro-Wilk 

normality test 

(p) 

Cohen d 

effect 

size 

Paired t-

test (p) 

Power (α 

= 0.05) 

Yuen’s paired test on 

trimmed means for 

dependent samples (p) Tr 

= 0.2 

Wilcoxon signed rank 

test with continuity 

correction (p) 

T min open - T min canopy -2.11 0.168 3.88E-09 -0.85 2.2E-16 1.00 0.000 2.20E-16 

T max open - T max canopy 0.51 0.321 8.17E-08 0.16 0.003 0.86 0.009 0.0009 

D = (T max open - T min open) - (T 

max canopy - T min canopy) 
2.62 0.017 6.92E-07 0.66 2.2E-16 

1.00 
0.000 2.20E-16 

 

Table 4 - General results of the multiple regressions 

Equation Model 

Durbin-Watson 

test for residual 

autocorrelation 

Score test for 

non-constant 

error variance - 

Breusch-Pagan 

(p) 

Variance inflation 

factor 

(multicollinearity) 

Number of 

cases with 

Cook’s 

distance >1 

Hat (leverage) values 

higher then  

3(k+1)/n = 0.0248 

Number 

of cases 

% of total 

leverage 

“T max open - T max canopy” = β1 + 

(β2*Canopy_index) + (β3*Rural) 
OLS 1.83 0.82 1.002 0 1 0.8 

“D (T max open - T min open) -  

(T max canopy - T min canopy)” = β1 + 

(β2*Canopy_index^2) + 

(β3*distance_to_thermometer_under_edg

e_of_canopy) 

OLS 1.89 0.74 1.000 0 5 12.5 
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Table 5 - Coefficient values, significance (p) and standardized coefficients of the multiple regression models 

Equation Model R2 
Power (α 

= 0.05) 
Coefficients Standardized coefficients 

β1 β2 β3 β2 β3 

“T max open - T max canopy” =  

β1 + (β2*Canopy_index) + (β3*Rural) 

OLS 0.051*** 0.992 -1.571** 0.026*** 0.782* 3.603 2.349 

OLS with robust standard 

deviation (HC3) 
0.051*** 0.992 -1.571** 0.026*** 0.782* 3.823 2.369 

IRWLS 0.053*** 0.993 -1.060* 0.016** 0.937** 2.806 3.295 

Quantile regression 0.033** 0.937 -0.737* 0.012* 0.675* 2.307 2.357 

“D (T max open - T min open) -  

(T max canopy - T min canopy)” = 

β1 + (β2*Canopy_index^2) 

+ (β3*distance_to_thermometer_ 

under_edge_of_canopy) 

OLS 0.059*** 0.997  0.447 0.0003*** 0.127* 4.080 2.399 

OLS with robust standard 

deviation (HC3) 
0.059*** 0.997  0.447 0.0003*** 0.127** 3.931 2.595 

IRWLS 0.044*** 0.982  0.849 0.0002*** 0.127* 2.741 2.923 

Quantile regression 0.056** 0.996  0.651 0.0002* 0.142* 2.445 2.197 

Obs: for (p) *<5%, **<1%, ***<0.1%. IRWLS reported as robust R2. Quantile regression reported as pseudo-R2. 

 

Table 6 - Independent sample t-tests 

Compared variables Group 

Average 

difference 

(°C) 

Levene 

test (p) 

Welch two 

sample t-

test (p) 

Cohen d 

effect size 

Power (α 

= 0.05) 

Yuen’s test on trimmed 

means for dependent 

samples (p)  

Tr = 0.2 with bootstrap 

Wilcoxon 

signed rank 

test with 

continuity 

correction (p) 

T min open - T min canopy 

+ 20 metres 

to light 

source 

-0.78 0.566 0.015 0.30 

0.981 

0.027 2.2E-16 

D = (T max open - T min open) - (T 

max canopy - T min canopy) 

+ 20 metres 

to light 

source 

 1.17 0.203 0.013 -0.31 

0.986 

0.000 2.2E-16 

Rural  0.87 0.697 0.040 -0.22 0.841 0.072 2.2E-16 
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Regarding the other multiple regression 

model, the tests with non-linear models indicated 

that the squared variable for canopy cover was more 

strongly correlated with the difference between the 

daily temperature ranges in the open area and the 

area under the canopy (D). Therefore, canopy cover 

was transformed in this way before running the 

linear regression. Versions including the linear and 

quadratic transformations of the canopy cover in the 

same equation did not improve the regression, and 

thus, the quadratic transformation was used alone. 

According to the model, a tree with 5% canopy 

cover would have a daily temperature range that 

was 0.0075°C (OLS) or 0.0050°C (IRWLS and 

quantile regression) narrower under the canopy than 

in the open; furthermore, these values changed to 

0.75°C (OLS) or 0.5°C (IRWLS and quantile 

regression) for a tree with 50% canopy cover and 

2.71°C (OLS) or 1.80°C (IRWLS and quantile 

regression) for a tree with 95% canopy cover. For 

each metre between the thermometer and the edge 

of the canopy, the daily temperature range was 

0.127°C (OLS and IRWLS) or 0.142°C (quantile 

regression) narrower than that in the open. 

Comparing the standardized coefficients, the 

canopy cover had more influence than did the 

distance to the edge of the canopy on the difference 

between the daily temperature range in the open 

area and the area under the canopy in OLS (even 

including correction for robust standard deviation); 

however, this effect gradually decreased in IRWLS 

and decreased even more in quantile regression. In 

OLS, no outlier was detected using Cook’s 

distance; however, four outliers were detected using 

leverage values, influencing 12.5% of the model 

results. Theoretically, IRWLS and quantile 

regression would decrease the influence of these 

outliers in the model and compensate for this bias. 

Table 6 presents the results for the t-tests 

with independent samples. Although Levene’s tests 

indicated that the variance should be homogeneous 

for the three tests, the Welch adjustment was still 

applied to all tests as an extra precaution. The three 

tests had small effect sizes (Cohen “d”); however, 

they were significant at the 95% confidence level 

for the parametric and non-parametric versions of 

the tests. However, the influence of urbanization on 

D was not significant in the robust version of the 

test, demanding higher caution when making 

inferences from this statistical effect. In 

measurements that were at least 20 metres from 

light sources, the daily minimum temperatures 

under the canopy were 0.78°C higher and the 

temperature ranges under the canopy were 1.17°C 

narrower than the respective values in the open area. 

The difference between the daily temperature range 

in the open and under the canopy was 0.87°C higher 

in rural areas than the values in urban areas. 

Therefore, all the null hypotheses presented in 

Table 2 can be rejected with at least 95% confidence 

using the parametric and non-parametric models. 

The robust models also supported the same patterns 

with 95% confidence, except for the influence of 

urbanization on the temperature range (D). Over a 

broad spectrum, the modelling results corroborated 

the respective alternative hypotheses from Table 2. 

All tests presented a power higher than 0.8, which 

was advised by Hair et al. (2018) as a cautious 

threshold that could be used to avoid type II errors. 

The high power of the tests also indicated a good 

balance in the experimental design regarding the 

sample size, effect size, and control of type I and II 

errors. 

 

Discussion 

Underlying processes 

Table 7 synthesizes the underlying 

processes that could have caused the effects 

described in the models. These processes can be 

discussed based on how Carlson and Boland (1978) 

developed a surface heat flux/temperature model to 

compare the canopy effects in urban and rural 

environments. They proposed that the main factor 

controlling the contrasting results between urban 

and rural environments is the ground moisture 

availability and ground conductance (thermal 

inertia). According to these authors, the ground 

moisture availability in cities is usually lower 

because of reduced areas in evapotranspiration, 

intensifying the daytime urban heat island effect. 

Ground conductance tends to be higher in urban 

areas because structures and artificial surfaces 

retain heat during the day and release it during the 

night, increasing night-time minimum 

temperatures. These processes show the relevance 

of evapotranspiration and lateral heat emissions 

(including horizontal radiation and wind 

advection), which were used for the explanation of 

many of the patterns described in Table 7. An 

atmospheric heat flow model proposed by Shashua-

Bar and Hoffman (2003) demonstrated how the tree 

canopy changes the microclimate of urban areas 

through heat-pump and windbreak effects. The 

model resulted in general cooling and a decrease in 

temperature variation (consistent with Table 7), 

especially during daytime. Heat pumping through 

tree evapotranspiration (evaporative cooling) was 

also emphasized by Lewis (1998) as a relevant 

factor associated with decreasing ground 
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temperatures, measured in forested and deforested 

areas. 

 

 

Table 7 - Patterns described in the models and possible explanations of underlying causes 

Phenomenon Explanation 

Lower minimum temperatures under canopy 

Night-time heat pump through evapotranspiration; 

microscale protection from heat island effects in urban 

areas. 

Lower maximum temperatures under canopy; 

proportionally lower as the canopy cover 

increases 

Shade and daytime heat pump through evapotranspiration 

Lower maximum temperatures under canopy 

in rural areas than in open areas 

Less lateral heat emission and light reflection from 

buildings and other sources during daytime in rural areas 

A smaller temperature range under canopy; 

proportionally smaller as the canopy cover 

and width increase 

Canopy and litter insulating (buffering) the surface from 

temperature extremes 

A smaller temperature range under canopy in 

rural areas 

Less lateral heat emission and light reflection from 

buildings and other sources during daytime in rural areas 

Proximity to a light source increases the 

minimum daily temperature under canopy 

The light source may provide a lateral heat flux to places 

under  the canopy 

Proximity to a light source decreases the 

buffering effect of canopy on the temperature 

range 

The light source may provide a lateral heat flux to places 

under the canopy 

Lower temperatures under tree canopies 

than on unshaded ground in urban environments 

were previously reported by Mascaró and Mascaró 

(2009). Robinette (1972) reported that the tree 

canopy controls solar radiation and increases air 

humidity, thus decreasing temperature variation and 

reducing the thermal amplitude under the 

vegetation, consistent with the patterns in Table 7. 

Both Robinette (1972) and Mascaró and Mascaró 

(2009) also reported that the canopy effect was 

more effective during the summer because the leaf 

density and tree evapotranspiration were more 

intense. Both also found that the canopy effect of 

groups of trees was cumulatively more intense than 

that of isolated trees, especially when the various 

layers of the canopy amplified the absorption of 

solar radiation and the stratification of air 

temperature under the vegetation. 

Various studies using remote sensing data 

supported the phenomena that tree removal 

increases average and maximum temperatures1 in 

 

1 It is necessary, nevertheless, to keep in mind that 

remote sensing studies would mainly reflect surface 

temperatures, not air temperatures, and would mainly 

reflect the top of canopy temperatures, not those under 

canopy. For example, the influence of canopy on the 

land cover temperature could be very significant in a 

both urban (Nichol, 1996; Elmes et al., 2017; Geene 

and Milward, 2017) and non-urban areas (Godinho 

et al., 2016) (the latter study also focused on oaks, 

as this study did), and the findings are consistent 

with the patterns observed in this study. An 

exception would be the trees in snow-covered areas, 

where the trees have a lower albedo and thus absorb 

more light energy than the bare snow (Bonan et al., 

1992). Li et al. (2015), based on remote sensing 

analysis, proposed that the balance between 

evaporative cooling and albedo warming of trees 

would result in higher net cooling at lower latitudes 

that would decrease towards higher latitudes until 

reaching negative net values in boreal forests of 

snow-covered areas. In temperate zones, where 

most of the measurements of the current study were 

taken, Li et al. (2015) and Alkama and Cescatti 

(2016) proposed that the net cooling would be 

higher in summer and negative during winter 

(because of snow). However, as the measurements 

of this experiment were taken in autumn (Northern 

remote sensing image, yet evapotranspirational effects 

would be weakly observable because they are mixed 

through the air volume. 
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Hemisphere) and spring (Southern Hemisphere), 

these snow-covered areas would have been 

restricted to high latitudes; therefore, the positive 

net cooling is consistent with these remote sensing 

analyses. Alkama and Cescatti (2016) also found 

that removing tree cover in areas/periods without 

snow increased maximum air temperatures and 

amplified diurnal temperature variation, consistent 

with the patterns in Table 7. 

Model reliability 

The reliability of these statistical models 

may be higher in the regions that had higher 

concentrations of sampling sites, i.e., primarily in 

the United Kingdom and secondarily in Europe. 

Therefore, further studies should include a more 

balanced distribution of measurements around the 

globe to verify the extent at which these patterns are 

uniform or differ within distinct regions. The same 

models as presented in this article were tested using 

geographical subsets (i.e. only samples from the 

Northern Hemisphere, from Europe, or from the 

United Kingdom); however, the changes in the 

effect sizes, R2 values, and p-values were so small 

that they did not justify the removal of the other 

measurements, especially considering the trade-off 

with the reduction in spatial coverage. In the same 

way, model runs that used subsets that excluded 

shrubs, as well as excluding measurements on 

artificial ground surfaces, resulted in very small 

changes that did not justify their exclusion.  

Overall, the leverage values of distant 

measurements in this study were not higher than 

those in the United Kingdom. Additionally, the 

outliers detected by the leverage values in the 

multiple regressions did not include shrubs or 

samples measured on artificial ground surfaces. 

Four of these outliers were in the United Kingdom, 

two were in continental Europe, and none were 

outside Europe. This result may indicate that the 

patterns and processes found in this study are robust 

in many environmental situations; however, there is 

still a clear need for further research. 

Conclusions 

The paired t-tests showed a significant 

effect of tree canopy; specifically, the tree canopy 

decreased the lower maximum and minimum daily 

temperature measurements, and it shortened the 

daily temperature range. The multiple regressions 

showed that the percentage of canopy cover 

significantly affected the difference between the 

maximum temperatures in the open areas and the 

areas under the canopy, as well as the difference 

between the temperature ranges. The regressions 

also showed that urbanization decreased the effect 

of the canopy on the maximum daily temperatures; 

additionally, the distance to the edge of the canopy 

was positively correlated with the difference 

between the daily temperature ranges in the open 

areas and the areas under the canopy. However, the 

low R2 values for both regression models indicated 

that there may be a large effect of other 

environmental variables that influence temperature. 

The independent sample t-tests showed that the 

distance from the light source was significant in 

decreasing the difference between the minimum 

daily temperatures in the open areas and the areas 

under the canopy; however, the distance from the 

light source increased the difference between the 

daily temperature ranges. The independent sample 

t-tests also indicated that urbanized areas have 

lower differences between daily temperature ranges 

in the open areas and the areas under the canopy 

according to the parametric and non-parametric 

tests but not according to the robust test. 

The main underlying processes that could 

explain these results include canopy shade and wind 

insulation, litter insulation of the ground surface, 

and tree heat pumps through evapotranspiration. 

Light sources and other heat sources, especially in 

urban environments, may add lateral heat transfer, 

which would influence the results. The results from 

the models and the discussion illustrate the relevant 

influence of trees on the microclimate, and these 

influences have consequences on ecosystem 

processes as well as on the thermal comfort in areas 

inhabited by humans. 

This study is also a great example showing 

how collaborative data collection can be an 

effective approach to gathering information on 

environmental processes in a way that integrates 

local contexts from many parts of the globe. Most 

previous studies that evaluated the effects of the 

canopy cover on a large scale were based on remote 

sensing (Nichol, 1996; Elmes et al., 2017; Greene 

and Milward, 2017; Godinho et al., 2016; Bonan et 

al., 1992; Li et al., 2015; Alkama and Cescatti, 

2016), and the ones based on field measurements 

were usually of a limited scale. The novelty of this 

study, which was based on a collaborative 

framework, was the performance of field 

measurements to a larger spatial extent. 

Nevertheless, the design also adds some uncertainty 

regarding the uniformity of the data collection 

procedures among all collaborators. To increase the 

uniformity, reduce the uncertainty, and allow a 

larger number of participants, the experimental 

design needed to be simplified compared with that 

of previous similar studies, which focused on a 

limited spatial scale but with a more detailed 

collection of weather and environmental variables 
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(Carlson and Boland, 1978; Lewis, 1998; Mascaró 

and Mascaró, 2009; Robinette, 1972). As discussed 

in the previous subsection, this study helped 

corroborate previous hypotheses on processes that 

have been proposed both from detailed small-scale 

experiments that lacked confirmation on broader 

spatial scales and from large-scale remote sensing 

studies that lacked detailed field measurement 

validation. Therefore, this study contributes to 

filling this gap as an interface between existing 

large-scale and small-scale experiments regarding 

the effect of the canopy cover on temperature. 

Further modelling studies, with appropriate 

fieldwork designs, could investigate the joint effects 

of other variables on temperature together with the 

variables investigated in this article. These variables 

could include longitude, type of ground surface, tree 

species, tree high, distance to other tree canopies, 

distance to buildings (or walls) and distance to 

coasts. 
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