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R E S U M O 

As palmeiras são componentes importantes para a manutenção da biodiversidade e ecossistemas em florestas tropicais. Além 

disso, elas são amplamente utilizadas por comunidades extrativistas para diversos fins, como alimentação, medicina e 

comércio. No entanto, o conhecimento sobre identificação e sua distribuição realizado por abordagens tradicionais apresentam 

baixa taxa de acurácia relatada e alto custo financeiro e operacional. Para solucionar esse problema, as redes neurais artificiais, 

especialmente as convolucionais, estão sendo utilizadas para reconhecimento de padrões em imagens, principalmente se 

coletadas por equipamentos remotos de baixo custo, como drones. Tais redes têm apresentado altas taxas de precisão na 

identificação de espécies florestais. Esse estudo propõe um método para classificar palmeiras nativas da família Arecaceae 

em áreas de floresta tropical, utilizando imagens adquiridas por um veículo aéreo não tripulado de baixo custo operacional e 

uma rede neural convolucional. O método alcançou resultados mais precisos do que as abordagens convencionais, com uma 

acurácia de 95,86% e métricas de precisão de 99,57% e Recall de 95,95%. Desta forma, os mapas derivados desses sistemas 

de baixo custo podem ser úteis para apoiar projetos de manejo e monitoramento florestal comunitário na Amazônia. 

Palavras-chave: segmentação, aprendizado profundo, CNN, palmeiras, sensoriamento remoto. 

 

Identification of native palms (Arecaceae) in tropical forest areas based on 

Convolutional Neural Network with UAV Images 
 
A B S T R A C T 

Palm trees are important components for maintaining biodiversity and ecosystems in tropical forests. Additionally, they are 

widely used by extractive communities for various purposes, such as food, medicine, and commerce. However, traditional 

approaches to identifying and mapping their distribution have reported low accuracy rates and high financial and operational 

costs. To address this problem, artificial neural networks, especially convolutional neural networks, are being used for pattern 

recognition in images, particularly those collected by low-cost remote equipment such as drones. Such networks have shown 

high accuracy rates in identifying forest species. This study proposes a method to classify native palm trees of the Arecaceae 

family in tropical forest areas using images acquired by a low-cost unmanned aerial vehicle and a convolutional neural 

network. The method achieved more accurate results than conventional approaches, with an accuracy of 95.86%, precision 

metrics of 99.57%, and recall and precision metrics of 95.95%. Thus, maps derived from these low-cost systems can be useful 

for supporting community forest management and monitoring projects in the Amazon. 

Keywords: segmentation, deep learning, CNN, palm trees, remote sensing. 

 

Introduction 

The Amazon Basin holds the largest 

continuous area of tropical forest in the world, 

covering approximately 4.2 million km², of which 

49.3% arem located within Brazilian territory, 

representing about 30% of all remaining tropical 

forests in the world. The Amazon biome is formed 

by a great diversity of environments, predominantly 

characterized by dense and open ombrophilous 

forests (SFB, 2010). This biome houses a large part 
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of the planet’s biodiversity, with approximately 

33,000 species of plants, of which at least 10,000 

have potential in the fields of medicine, cosmetics, 

pest control, as well as a source of food for wildlife 

and for humans (Mittermeier et al., 2005). Among 

these species, palms comprise about 35 genera and 

more than 170 species (Alvez-Valles et al., 2018).  

The inhabitants of the region explore various 

palm species as a source of economic order and 

consumption, being used for various purposes such 

as construction, roofing, furniture, wood, 

landscaping, handicrafts, oil production, food, 

beverages, among other uses (Lorenzi et al., 2010; 

Macia et al., 2011). It is observed, therefore, that 

palms contribute to the subsistence of traditional 

Amazonian populations (indigenous, extractivists 

and subsistence farmers who live near the forests) 

(Ferreira, 2006; Balslev et al., 2011; Macia et al., 

2011; Gomes et al., 2016). 

Despite their importance, information about 

the number of palms and their distribution in 

different scenarios is difficult to obtain, thus limited. 

A classical approach to solve this problem is to 

conduct field inventories, however, mapping palm 

species in loco in tropical forest areas is labor-

intensive and involves planning, human resources, 

adequate infrastructure, and logistics since they are 

difficult to access areas with great diversity of flora, 

which hinders their identification and, consequently, 

generates a high cost. 

The analysis of forest biodiversity requires 

accurate and reliable data, which can be obtained 

through various sensors, including satellite images, 

radar images, and, more recently, images captured by 

drones. The increasing use and popularization of 

drones have driven research in the identification of 

forest species, making this task more accessible and 

cost-effective. With the advantage of offering high 

spatial resolution images and low operational costs, 

these sensors allow for a more precise and efficient 

analysis of forest biodiversity, contributing to 

environmental conservation. 

The increasing use of drones equipped with 

high spatial resolution sensors, capable of capturing 

images with details of less than 1 meter per pixel, has 

enabled more precise and detailed object mapping in 

the image. However, with the decrease in pixel size 

due to spatial resolution, a single object can occupy 

more than one pixel, making identification and 

classification more complex and challenging. 

Additionally, it is important to note that the 

information contained in a single pixel may be 

insufficient to identify the object of interest in the 

image. Therefore, the development of classification 

algorithms with more sophisticated approaches has 

become essential to accurately identify and classify 

these elements, taking into account the complexity of 

the information generated by high spatial resolution 

sensors (Lang, 2008). 

Thus, the application of new techniques and 

concepts from both the Geographic Information 

Science (GIScience) and Artificial Intelligence fields 

has led to the emergence of the emerging field of 

Object-Based Image Analysis (OBIA). The 

popularization of these new image classification 

methodologies has driven research in forest species 

identification, resulting in high accuracy rates and 

cost reduction. 

As described by Peck et al., (2012); Otero et 

al., (2018), images captured by unmanned aerial 

vehicles (UAVs), although not free, have the 

potential to discriminate tree species in tropical 

environments. While these images are often captured 

with only three Red, Green, Blue (RGB) channels, 

providing limited spectral information compared to 

satellite images, drone images often have high 

resolutions (< 10 cm/pixel), allowing for clear 

visualization and extraction of structural 

characteristics (shape, size, and texture) of land 

objects, which can favor palm tree identification, as 

the crowns of palm trees have distinct morphological 

characteristics, according to (Ferreira et al., 2019). 

It is observed that a considerable portion of 

research addressing this issue uses classical models 

in their solutions to identify and classify species. 

However, these models do not perform satisfactorily. 

In more recent research, artificial neural networks 

have been applied and have shown excellent pattern 

recognition rates from images collected by remote 

sensors, becoming an interesting alternative to 

solving these problems (Fernandes, 2013). They 

have evolved intensely in recent years as a result of 

their constant application in various research areas 

and activities. One advantage of using a neural 

network, in contrast to classical geoprocessing 

techniques, is that the neural network "learns” to 

automatically extract target characteristics such as 

predominant color, geometry, texture, etc., with the 

aim of identifying and classifying the target object 

(Weinstein et al., 2019). 

Convolutional Neural Networks (CNNs), 

which have deep learning architectures, have proved 

to be the most suitable for tree detection in forest 

scenes (Weinstein et al., 2019), urban areas (Branson 
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et al., 2014), and agricultural lands (Saldana Ochoa e 

Guo, 2019). The reason is that CNNs achieve 

remarkable performance in object detection tasks, as 

they are complex enough to extract high-level 

intrinsic features to learn to spatially identify and 

label objects (Zhu et al., 2018). In computing, 

convolutional neural networks with deep learning is 

an emerging field that has many opportunities with 

good results for identifying physical characteristics 

of plants based on images (Sun et al., 2017). 

The research by Culman et al., (2020) 

demonstrated success using convolutional neural 

networks with deep learning when applied to the 

challenging problem of locating and classifying 

individual Phoenix palm trees from high-resolution 

(RGB) aerial images, achieving accuracy results of 

86%. It is worth noting, however, that in this cited 

research, the palms were from cultivation and not 

native to the forest, having a regular distribution, 

which in theory would facilitate the location of the 

species. In the work by (Li et al., 2019), two-stage 

convolutional neural networks were used to detect oil 

palm trees on a large scale based on high-resolution 

spatial images collected by the Quickbird satellite, 

resulting in a reported reciprocal average F1 score of 

94.99%. However, the two-stage method adopted in 

this work, i.e., one for classifying ground cover and 

another for classifying the object, makes it complex 

for reproduction. 

In the study by Gibril et al. (2021), an 

automatic approach was presented for large-scale 

mapping of date palm trees using very high-spatial-

resolution unmanned aerial vehicle (UAV) data. This 

was based on a U-Shape convolutional neural 

network for semantic segmentation of date palm 

trees. The generalization evaluation of the proposed 

model on a comprehensive and complex test set 

exhibited high classification accuracy, 

demonstrating that date palm trees can be 

automatically mapped from UAV images with F-

scores, mean intersection over union, precision, and 

recall of 91%, 85%, 0.91, and 0.92, respectively. 

According to Khaing et al. (2021), the 

objective of their study was to classify and count 

different types of palm trees, including Toddy palm, 

Coconut palm, and Palm oil, using a remote sensing 

drone video and deep learning architecture known as 

mask R-CNN with retuning hyperparameter strategy. 

Aerial images were collected by drones in Upper and 

Delta Coastal areas of Myanmar, which were used to 

prepare a dataset of over 12,000 images. The 

performance of the system was examined using a 

Bayesian optimization algorithm to retune the 

hyperparameters of the model. The study concluded 

that tuning the learning can improve the performance 

of classification for local palm tree segmentation 

task. The system accurately defined the Toddy palm 

with better accuracy and counting. 

Wahed et al. (2022) aimed to develop a 

model for detecting the maturity of sago palm trees 

using drone images in their article. The methodology 

used was the combination of the architecture of three 

existing CNN models: AlexNet, Xception, and 

ResNet. The proposed model, called CraunNet, 

achieved 85.7% accuracy in 11 minutes of learning 

time and was two times faster than existing models. 

The study showed that CraunNet could be a more 

efficient and computationally cost-effective solution 

for detecting the maturity of sago palm trees. 

In the research proposed by Mohamed et al. 

(2022), a deep learning-based instance segmentation 

framework was developed to detect and map 

individual date palm trees from UAV imagery. The 

framework involved converting image tiles and 

vector data into Common Objects in Context 

annotation format and evaluated various instance 

segmentation models using different network 

backbones. The study assessed the performance and 

generalizability of the evaluated models on testing 

datasets with varying spatial resolutions. Results 

showed that Mask R-CNN models with Swin 

Transformer backbones outperformed those with 

ResNets in detecting and segmenting date palm trees, 

achieving high mAP50 scores and F-measures. The 

proposed framework offers an efficient tool for 

mapping date palm trees from multi-scale UAV-

based images, suitable for individual tree crown 

delineations and other earth-related applications. 

The study by Letsoin et al. (2022) aimed to 

detect sago palms based on their physical 

morphology using unmanned aerial vehicle (UAV) 

RGB imagery. The authors used three pre-trained 

networks (SqueezeNet, AlexNet, and ResNet-50) 

and collected data from nine different groups of 

plants. The ResNet-50 model was found to be the 

preferred base model for sago palm classifiers, with 

a precision of 75%, 78%, and 83% for sago flowers, 

sago leaves, and sago trunk, respectively. However, 

the models tended to perform less effectively for 

sago palm and oil palm detection due to their 

physical similarity. The authors recommended 

improving the optimized parameters and providing 

more varied sago datasets for better detection and 

classification. 
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In the article by Marin et al. (2022), an 

integrated aerial system was proposed that uses 

UAV-captured images to identify the Amazonian 

Moriche palm in dense forests. The Mask R-CNN 

deep learning model was trained with 478 labeled 

palms using the transfer learning technique based on 

the well-known MS COCO framework. 

Comprehensive field experiments were conducted, 

resulting in a precision identification of 98%. The 

model is fully automatic and suitable for identifying 

and inventorying this species above 60 m under 

complex climate and soil conditions. 

Considering the importance of palms and the 

challenges involved in identifying species, as 

highlighted above, this study proposes the 

development of a method for classifying native palm 

species Arecaceae in tropical forest areas, based on 

high spatial resolution images (4 cm/pixel) captured 

by an unmanned aerial vehicle (UAV), using a 

convolutional neural network - CNN, in an area 

belonging to the Santa Luzia Directed Settlement 

Project (PAD) in the municipality of Cruzeiro do Sul, 

Acre state. 

 

Methods 

Study area 

The study area is a fraction of one of the 

various properties belonging to the Santa Luzia 

Directed Settlement Project (PAD), located in the 

western region of the state of Acre, with a central 

coordinate of 7°58’15"S, 72°25’34"W, in the 

municipality of Cruzeiro do Sul (Figures 1a, 1b, 1c, 

1d). 

The area is composed of diverse tropical 

forest, which presents a density and frequency of tree 

palm species. The mosaic of ortho-images in the 

form of a rectangle used in this investigation has an 

area of 2.72 hectares and measures 124 m by 220 m 

in size (Figure 3a). 

According to data from (INMET, 2020), the 

region is inserted in the rainy equatorial subclimate, 

registering approximately 1,950 millimeters of rain 

annually, with an average annual temperature of 

24.8°C. The driest month of the year is July, with a 

minimum climatological average of 60 mm, while 

March is the month with the highest rainfall, with a 

climatological average of 299 mm (INMET, 2020). 

Regarding geomorphology, the study area is 

inserted in the geomorphology unit Depression of 

Juruá-Iaco. This unit presents a variable altitude 

between 150 and 440 m, its main forms of dissection 

are convex and sharp. 

It is located in the Juruá/Liberdade River 

basin (Acre, 2006). Biotic environment studies 

produced by the Ecological-Economic Zoning of the 

State of Acre (ZEE) demonstrate that the research 

area is comprised of the following forest typology: 

Open Forest with Palms (FAP), which is generally 

found in areas near alluvial plains of rivers with high 

flow during the rainy season. This physiognomy is 

characterized by an open canopy forest with the 

presence of palms, and areas with lianas can also be 

found (Acre, 2006). 

 

UAV images 

The drone images were captured in 

December 2020 using a Phantom 4 Professional 

model, which has a 20-megapixel optical (RGB) 

camera with an automatic focus lens of 24 mm spatial 

resolution. To ensure a level view during image 

collection, the camera is attached to a three-axis 

electronic gimbal stabilization system. The UAV 

flew at 120 m above the forest canopy at cruising 

speed (13ms-1), and the flight was conducted 

between 09:00 and 12:00 local time (UTC -05:00). A 

total of 683 images were captured by the drone 

during its flight over the property, although, as 

mentioned earlier, the research uses only a fraction 

of the flight area (Figure 3a). 
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(a) (b) (c) 

 
(d) 

Figure 1 – (a) Location of the state of Acre in Brazil. (b) Location of the municipality of Cruzeiro do Sul in the 

state of Acre. (c) Location of the Santa Luzia Directed Settlement Project (PAD) in the municipality. (d) Location 

of the research area within the Santa Luzia Directed Settlement Project (PAD). 

 

The images have a spatial resolution of 4.3 

(cm/pixel), which were calibrated and generated the 

orthomosaic using Pix4Dmapper® software in the 

WGS 84/UTM zone 18S coordinate system. 

Visual inspection of the study area revealed 

a significant number of palm trees (Figure 3a). 

According to the forest inventory of palm species 

conducted by the Acre Foundation of Technology - 

FUNTAC, the two most common species detected in 

the region are: - Euterpe precatoria; and - 

Oenocarpus bataua. 

The forest inventory is a systematic and 

detailed process of collecting and analyzing data 

about a forest, including information on the 

composition, structure, and dynamics of the 

vegetation, as well as the physical environment and 

socio-economic characteristics of the area in 

question (Husch, 2003). 

 

The data from the forest inventory of palm 

species in the study area conducted by FUNTAC are 

presented in Figure 2. The Table 1 presents 

information about these species (Lorenzi et al., 

2010). 
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Figure 2 – Distribution of palm species in the study 

area conducted by FUNTAC. 

Set of Images and Labels 

Due to the limited size of the research area, a 

common technique in computer science was used to 

expand the image dataset. Thus, the original images 

were flipped horizontally and vertically (Flip and 

Flop) and combined (Flip/Flop), tripling the research 

area and significantly increasing the number of 

samples for building and testing the proposed model. 

This process was automatically performed using the 

ImageMagick® software for both images and labels, 

as described below. 

In the first stage, automatic segmentation 

was performed to generate the necessary classes for 

supervised training of the model. For this task, the 

Mean Shift Clustering algorithm available in the 

Orfeo Toolbox® plugin of the QGIS® software was 

employed. 

Mean-shift is a density-based clustering 

algorithm used to identify regions of high density of 

points in a feature space. It works by iteratively 

moving each point towards the mean of the points in 

its neighborhood, until the position of a point does 

not change significantly. Each region of high density 

is considered a cluster (Cheng, 1995; Comaniciu 

2002; Meer, 2002). 

This algorithm has the advantage of 

producing output in vector format, and dividing the 

processing into windows, defined in this process with 

a size of 1,024, which allows for segmentation of 

very large areas even with limited memory space. We 

set the minimum segment size to 5 pixels, while 

keeping the other parameters equal to the algorithm’s 

default values. The segmentation process resulted in 

a total of 42,838 segments (Figure 3b), of which 

4,146 (≈ 1,900 m²) belonged to the palm class, 

represented internally by the value 1, and 38,692 (≈ 

25,330 m²) segments belonged to the forest class 

without palm presence and/or background, 

represented by the value 9. 

The assignment of classes to segments was 

performed by an analyst through visual inspection, 

using a natural color composition of the orthomosaic 

at a scale of 1:250. The assignment was carried out 

for all segments (Figure 7b), described in the 

previous section, that belonged to visible palm 

classes in the image, respecting the boundaries of the 

generated segments. The QGIS® software was used 

for this task. 

The approach used in this study to securely 

assign segments corresponding to the palm class 

(value 1) by the analyst during visual inspection 

could be applied due to the high spatial resolution 

(4.3 cm/pixel) of the drone-captured images (Figure 

4a, 4b), as well as having an inventory database of 

palms produced by FUNTAC as support. The study 

area was divided into 180 regular-sized 512×512-

pixel parcels/files, with each parcel having an 

approximate size of 22 m². The cutting process was 

performed automatically using the ImageMagick® 

software. 

 

CNN Architecture 

The number of layers, i.e., the depth of the 

network, is directly related to the network’s capacity 

to learn data features, which reduces classification 

errors, according to studies on deep networks 

(Shimodaira, 2000; Simonyan e Zisserman, 2014). 

This led researchers to increase the network depth by 

adding more layers in an attempt to improve results. 

However, some studies have shown that increasing 

network depth leads to an increase in training error 

(Simonyan e Zisserman, 2014). 

To overcome the problem, He et al., (2016) 

proposed a deep residual learning structure called 

Residual Network (ResNet). A ResNet architecture 

is composed of several residual blocks that perform 

skip connections, meaning they forward the 

activations from a certain layer to a deeper layer. 

Common variations of ResNet include ResNet-18, 

ResNet-50, and ResNet-101, which differ in the 

number of residual layers. In this study, we used the 

ResNet-18 architecture 4, which provided a 

reasonable trade-off between processing time and 

accuracy in preliminary tests. 

According to He et al., (2016), ResNet-18 is 

capable of achieving comparable or superior 

performance to other deep network architectures, 

even when trained with less data. This is due to the 



Revista Brasileira de Geografia Física v. 16, n.05 (2023) 2360-2374. 

2366 
Júnior, A. G., Ribas. R. P. 

 

use of the residual module, which allows the network 

to learn deeper and more robust representations of 

input data, and the use of normalization, which helps 

to avoid the problem of vanishing gradients and 

speeds up training (He et al., 2016). (Bengio; 

Boulanger-Lewandowski; Pascanu, 2012), on the 

other hand, describes that the vanishing gradient 

problem can arise during the training of deep neural 

networks, where the gradient parameters (weights 

and biases) become too small, making it difficult for 

the network to learn. 

 

 

 

 

Table 1 – Description of the native palm species present in the research region. 

Species Description 
UAV 

images 

Ground 

View 

Euterpe 

precatoria 

 

Common 

Names: Forest 

Açaí, Açaí, 

Juçara. 

Formed by a simple, erect stem, 3-20 m high and 4-

23 cm in diameter, with a cone of visible roots at the 

base and a smooth palm heart at the top. Leaves 

pinnate, flat, in 10-20 contemporaneous, divergent, 

and occasionally pendulous; closed sheath 0.7-1.6m 

long, forming a tube with a green stem or sometimes 

green with vertical yellow stripes. Fruits globular, 

between 1.0 and 1.3 cm in diameter, purple-black in 

color. Its habitat occurs in the states of Acre, 

Amazonas, Pará, and Rondônia, in lowland humid 

tropical forests, usually along rivers in periodically 

flooded areas (Lorenzi et al., 2010). 

 

 

Oenocarpus 

bataua 

 

Common 

name: 

Patawa. 

It has a solitary stem with 5-25min height and 20-45 

cm in diameter, with visible fasciculate roots at the 

base and without a smooth top. The leaves are in 

numbers of 10-20, erect and divergently arranged. It 

produces oblong fruits with 2.7-4.5 cm in length, 

with a dark purple color and ruminate endosperm. 

They are widely found in the Brazilian Amazon 

region and northern South America, in the humid 

forests of floodplains and gallery forests, both 

inundated and upland areas (Lorenzi et al., 2010). 
 

 

 

As described by He et al., (2016), ResNet-18 

consists of 18 layers divided into two types: i) 

residual layers and ii) transformation layers. The 

residual layers are composed of two convolutional 

layers followed by a sum operation with the input, 

while the transformation layers are composed of a 

convolutional layer and a normalization operation. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3 – (a) Study area: tropical forest with high incidence of native palms. (b) Vectorized automated 

segmentation of the study area using the Mean-Shift algorithm. Segments colored in red were assigned to the palm 

class [value 1], while gray segments were assigned to the background class [value 9]. (c) Pixel labels colored in 

red indicate the presence of palms, while the gray area indicates the forest without palm presence. (d) Overlay of 

data labels on the study area image. 

 

The input layer of ResNet-18 is followed by 

a normalization layer and a convolutional layer, 

which serve as a feature extraction layer. The output 

of this layer is then passed through the residual and 

transformation layers, which allow the network to 

learn deeper and more robust representations of the 

input data. In summary, the network architecture 

presents different functions depending on the type of 

layer. - Convolution: performs element-wise 

multiplication between input data and a set of learned 

filters, producing feature maps that capture specific 

characteristics of the input data; - Batch 

Normalization: normalizes the activations of the 

previous layer by subtracting the mean and dividing 

by the standard deviation of activations in a batch of 

samples; - Rectified Linear Unit - ReLU (activation): 

replaces all negative values in the input with zero, 

providing non-linearity to the network, thus helping 

to speed up the training process and increase the 

model accuracy; - Addition: combines two or more 

inputs element-wise by adding corresponding 

elements from each input; - Transpose Convolution: 

performs the reverse operation of a convolution, 

expanding the spatial resolution of the input; - 

Cropping: crops a part of the input tensor to remove 

unnecessary information and keep only relevant 

information; - Depth Concatenation: combines 

multiple inputs along the depth dimension by 

concatenating their feature maps to form a single 

output tensor; and - Softmax (activation): converts 

input activations into a probability distribution, 

where the sum of the output values is equal to 1, it is 

commonly used in the final layer of a CNN for multi-

class classification problems (He et al., 2016). 
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(a) 

 
(b) 

Figure 4 – (a) Details of a data input (512×512 pixels) of an image at a scale of 1:250 for class assignment to 

segments. (b) Segments with palm class [value 1] defined by the analyst in red color. 

 

For semantic segmentation, the ResNet-18 

was incorporated into the DeepLabv3+ architecture, 

which is considered a state-of-the-art deep learning 

model for semantic segmentation of images. 

DeepLabv3+ was proposed by (Chen et al., 2018) 

and consists of an encoder block and a decoder block, 

as shown in Figure 5. 

The encoder module gradually reduces the 

spatial dimension of the input patch and captures 

high-level semantic information. The decoder 

module recovers the patch size by restoring spatial 

information to produce sharp segmentation results. 

DeepLabv3+ utilizes a powerful technique that 

allows for capturing multi-level features of the input 

image while controlling the resolution of the 

convolutional layers’ output. Convolutions 

belonging to the block called Atrous Spatial Pyramid 

Pooling (ASPP) are applied in parallel with different 

rates and serve to capture multi-level characteristics 

of the input image. 

The output generated by ResNet-18 with 

DeepLabv3+ are score maps for each class. The 

transposed convolutional layer performs up-

sampling with five filters. Next, the softmax 

classifier is applied to produce pixel-wise maps 

where each pixel contains class association 

probabilities. 

 

 

 

CNN Setup 

Initially, the data was partitioned following 

an 80% ratio, which represents 144 parcels with a 

size of 512×512-pixels for training, and 20% (36 

parcels) for testing randomly chosen to train and test 

the fully convolutional network model. This allowed 

for calculating the variability in classification 

accuracy, depending on the data used in the 

classification process. The image data does not 

contain edge pixels with a value of 0. 

Thus, the model was trained with two 

classes, namely one class of palm trees, which 

comprises two species of palm trees: Oenocarpus 

bataua and Euterpe precatoria, in addition to the 

background class. The inclusion of the background 

class in the training process was necessary for the 

network to learn to differentiate palm trees from 

other types of trees. 

The mini-batch size was 16, and the 

maximum number of epochs was 10. A mini-batch is 

a subset of the training data that is used by the 

Stochastic Gradient Descent with Momentum - 

SGDM algorithm, which aims to update the 

network’s weight and bias parameters (Murphy, 

2012). An epoch is a complete pass through the entire 

training set, consisting of 512 random patches. Each 

epoch, a different set of 512 patches was extracted 

from the images. During training, the input images 

are randomly rotated and transformed along their 

axes (𝑋 and 𝑌). 
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Figure 5 – Network architecture based on DeepLabv3+ CNN as described in (CHEN et al., 2018). 

 

This procedure is another data augmentation 

technique, which is a common practice to avoid 

overfitting the network. The ResNet-18 model 

weights were initialized with pre-trained values from 

the ImageNet database (Deng et al., 2009), and the 

learning rate was 0.05. The class score maps in the 

testing phase were produced with a size of 512×512 

pixels. 

The training and inference were performed at 

the Geoprocessing Laboratory - GEOLAB, on a 

desktop workstation with Intel Xeon(R)® CPU ES-

1650 v4 @3.6 GHz, 32 GB DDR4 main memory, and 

NVIDIA® Quadro K1200 GPU with 4 GB GDDR5 

dedicated memory and 512 CUDA® cores. All 

image processing procedures were performed using 

the programming language MatLab R2022b®. 

 

Results 

The best performance evaluation of the 

proposed model achieved an average accuracy of 

95.8%. During training, the validation frequency 

occurred 50 times, in which a portion of the training 

data is typically used exclusively for this purpose, 

allowing an evaluation of the network’s ability to 

generalize its learning to new data. 

The confusion matrix (Figure 6) shows that 

the CNN segmentation classified 976,442 pixels as 

palms, which represents 94.44% of the total palm 

pixels. For the background class, the segmentation 

correctly classified 13,181,512 pixels as background, 

representing 95.95% of this class. The result showed 

confusion in the segmentation that misclassified 

556,880 background pixels as palms (3.8%) and 

57,502 palm pixels were misclassified as background 

(0.40%). 

Overall, the accuracy (Equation 1) achieved 

by the model was 95.84% of predictions were 

classified correctly, and 4.16% were wrong. 

However, the classes are not balanced, meaning that 

when the number of examples for each class is not 

approximately equal, recall and precision are more 

useful metrics to evaluate the model’s performance. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
TP + TN

TP + TN + FP + FN
 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
TP

TP + FP
 (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
TP

TP + FN
 (3) 

Just like accuracy, the precision metrics 

(Equation 2) and recall (Equation 3) have widely 

publicized formulas. Where TP (True Positives) are 

the correct predictions of the positive class; FP (False 

Positives) are the incorrect predictions of the positive 

class. TN (True Negatives) are the correct 

predictions of the negative class, and FN (False 

Negatives) are the incorrect predictions of the 

negative class. The precision achieved by the model 

reached 99.57%, while the recall metric reached 

95.95%. 

The segmentation result with the classes 

assigned by the model was compared with the data 
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labeling performed by the analyst. The image 

difference operation is an image processing 

technique that allows the calculation of pixel-by-

pixel difference between two images. This operation 

can be useful in various applications, such as 

detecting changes in images, identifying objects, etc 

(Gonzalez; e Woods, 2000). 

The formula applied to obtain the difference 

image was: 𝐷(𝑥, 𝑦) = 𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦), where 𝐷(𝑥, 

𝑦) is the pixel value in the resulting difference image 

at position (𝑥,𝑦); 𝐼1(𝑥, 𝑦) is the pixel value in the first 

image at position (𝑥,𝑦); and 𝐼2(𝑥, 𝑦) is the pixel value 

in the second image at position (𝑥,𝑦). 

The resulting difference image was color-

coded, with green representing correct classifications 

and yellow and red indicating classification errors. 

 

 
Figure 6 – Confusion Matrix. 

 

 

 

 
(a) 

 
(b) 

Figure 7 – (a) Image detail at the 1:250 scale. (b) Result of the difference between the segmentation produced by 

the neural network and the data labels. Pixels in green represent correct classification, while pixels in yellow and 

red represent misclassification. 

 

Figures (7a and 7b) presents a small sample 

of the difference image between these classifications. 

The green pixels were classified correctly, while the 

yellow pixels represent an error, where palm tree 

pixels (class 1) were classified as background (class 

9), and the red pixels represent errors where the 

model classified background (class 9) as palm trees 

(class 1). 

The Table 2 presents the results of the 

difference image 𝐷(𝑥, 𝑦) = 𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦), where 

𝐼1 is the data labels of the study area produced by the 

analyst through visual inspection, and 𝐼2 is the 

segmentation and identification of the study area 

performed by the proposed convolutional neural 

network model. 
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Table 2 - Results of the difference image process. 

Category # Pixel 
Square 

meters 
% 

True 

Positives 
14289414 26,384.267 96.67 

False 

Positives 
477401 881.483 3.23 

False 

Negatives 
13522 24.967 0.09 

Total 14780337 27,290.717 100.00 

 

The results of the difference image 

demonstrate that the highest percentage (96.67%) 

was correctly classified as True Positives. However, 

there was confusion of 3.23% of the palm tree class 

that was wrongly classified as background (False 

Positives). This percentage covers a total area of 

881,483 square meters. Additionally, about 24,967 

square meters (0.09%) that should have been 

classified as background were instead classified as 

palm trees (False Negatives). 

 

Discussion and conclusion 

This study was based on low-cost drone 

images acquired with only three channels (RGB), 

and it demonstrated the potential for the use of deep 

learning to map the spatial distribution of palm 

species in Amazonian forests. 

The study did not differentiate between the 

two palm species (Euterpe precatoria and 

Oenocarpus bataua) present in the study area, but the 

network model used achieved excellent 

generalization by efficiently representing both 

species and separating them from the rest of the 

background. This was possible due to the network's 

ability to learn and generalize from the training data. 

Additionally, during the training process, the 

validation occurred 50 times, where a portion of the 

training data was exclusively used for this purpose. 

This allowed for an assessment of the network's 

performance and its ability to generalize its learning 

to new data, which is a critical aspect of developing 

robust and accurate models. 

The proposed CNN segmentation model 

achieved an average accuracy of 95.8%, 

demonstrating its ability to effectively classify palm 

and background pixels in the image data. The 

confusion matrix analysis revealed that the model 

correctly classified 94.44% of palm pixels and 

95.95% of background pixels, while misclassifying 

only a small percentage of pixels (3.8% of 

background and 0.40% of palm pixels). 

It is important to highlight that the classes in 

the dataset are not balanced, which means that the 

number of examples for each class is not equal. 

Therefore, it is essential to evaluate the performance 

of the model using metrics such as recall and 

precision, which take into account the class 

imbalance. These metrics are particularly important 

in situations where imbalanced classes can lead to 

biased or inaccurate results. The precision achieved 

by the model was 99.57%, and the recall metric 

reached 95.95%. 

The high classification accuracy rate 

achieved for palms suggests that there is no need for 

spectral information in the classification process, 

which contradicts the results of previous studies that 

show that classification success usually depends on 

high spectral resolutions (Fassnacht et al., 2016). 

The results demonstrate the potential of 

CNN segmentation for accurately identifying palm 

pixels in images and have practical implications for 

projects related to palm mapping and monitoring. 

Maps of palm spatial distribution can significantly 

assist management projects in the Amazon, 

providing a valuable tool to support decision-making 

and community forest monitoring programs. The 

approach developed in this study can be applied to 

other tropical forest areas where high spatial 

resolution drone images are available, with a 

resolution of at least 4 cm per pixel. 

Based on the results, we can conclude that 

the use of convolutional neural networks is a viable 

and efficient alternative for the identification and 

classification of palm species in the Amazon 

Rainforest. This technique showed high accuracy in 

species identification, surpassing traditional methods 

used until now, as well as presenting a lower cost 

compared to these methods. Therefore, the use of 

object image analysis techniques such as 

convolutional neural networks may be a promising 

solution for mapping and studying the biodiversity of 

the Amazon Rainforest and other areas with high 

species diversity. 

Further research is needed to evaluate the 

potential of such sensors for palm species mapping 

in tropical environments. One of our future 

investigations is to retrain the model by 

differentiating palm species and adding the 3D data 

(point clouds) obtained from the drone to the 

classification process, hypothesizing that this data 

could help identify a unique canopy architecture. 
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