Intraseasonal Climate Forecast For The Alcântara Region In Northeastern Brazil (Previsão Climática Intrasazonal para a Região de Alcântara no Nordeste Brasileiro)

Cleber Souza Corrêa, Michelle Simões Reboita, Gerson Luiz Camillo, Vinicius Milanez Couto, Felipe Nascimento Corrêa

Resumo


Thisstudy used the outputs from the global NCEP climate forecast system (CFSv2) as initial and boundary conditions for the Regional Climate Model (RegCM4.6). The purpose of this work is to analyze the performance in forecasting the sub-seasonal and seasonal climate from June to October 2017 in Alcântara Launch Center (ALC), located in the northeastern Brazil. The study focused on wind and air temperature variables in the lower atmosphere. The predictions were validated with the ERA-Interim reanalysis. In the Alcântara region, the RegCM4.6 model presented a good performance in representing the monthly means of the variables under study, but in other regions of the domain, it presented greater deviations.



 

R E S U M O

 

As saídas do sistema global de previsão climática do NCEP (CFSv2) foram utilizadas como condições iniciais e de fronteira no Modelo Regional Climático (RegCM4.6) a fim de produzir previsões intrasazonais (um mês) para o Centro de Lançamento de Alcântara (CLA) no estado do Maranhão. As previsões foram realizadas de junho a outubro de 2017 e o vento e a temperatura do ar na baixa atmosfera foram avaliados. Para tanto, foi utilizada a reanálise ERA-Interim. Na região de Alcântara, o RegCM4.6 teve uma boa performance em representar as médias mensais das variáveis em estudo, mas em setores oceânicos do domínio, apresentou maiores desvios.

 

Palavras-Chaves: modelo climático regional (RegCM4.6); downscaling dinâmico; CFSv2; Alcântara


 


Palavras-chave


regional climate model (RegCM4.6); dynamical downscaling; CFSv2; Alcântara

Texto completo:

PDF (English)

Referências


Brunet, G., M. Shapiro, D. Hoskins, M. Moncrieff, R. Dole, G.N. Kiladis, B. Kirtman, A. Lorenc, B. Mills, R. Morss, S. Polavarapu, D. Rogers, J. Schaake & J. Shukla, 2010: Collaboration of the weather and climate communities to advance subseasonal to seasonal prediction. Bulletin of the American Meteorological Society, 1397-1406.

Corrêa, C.S., Camillo, G.L., Couto, V.M., Fisch, G., Correa, F.D.N., & Harter, F.. 2017. Climate Forecasts at the Centro de Lançamento de Alcântara Using the Climate Model RegCM4. Journal of Aerospace Technology and Management, 9(1), 18-28.

da Rocha, R.P., Cuadra, S.V., Reboita, M.S., Kruger, L.F., Ambrizzi, T. & Krusche, N.. 2012. Effects of RegCM3 Parameterizations on Simulated Rainy Season over South America. Climate Research, [online] 52:253-265. Available: http://dx.doi.org/10.3354/cr01065. Access: 23 jun. 2014

De Benedetti, M., & Moore, G.W.K. 2017. Impact of resolution on the representation of precipitation variability associated with the ITCZ. Geophysical Research Letters, [online] 44:12519–12526. Available: https://doi.org/10.1002/2017GL075714. Access: 13 may. 2018

Dee, D. P; et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137:553-597.

de Jesus Reuter, E.D., Fisch, G., & Correa, C.S.. 2015. The Sensitivity of Wind Forecasts with a Mesoscale Meteorological Model at the Centro de Lançamento de Alcântara. Journal of Aerospace Technology and Management, 7(2):247-258.

de Souza, E.B., Lopes, M.N.G., da Rocha, E.J.P., Souza, J.R.S., Cunha, A.C., et al.. 2009. Precipitação climatológica sobre a Amazônia oriental durante o período chuvoso: Observações e simulações regionais com o RegCM3. Revista Brasileira de Meteorologia, [online] 24:111-124. Available: http://dx.doi.org/10.1590/S0102-77862009000200001. Access: 15 nov. 2017

de Souza, E.B., Moraes, B.C., Ferreira, D.B.S. & Meira-Filho, L.G.. 2014. Dynamical Downscaling for Railroad Areas in Eastern Amazon and Southeastern Brazil: Current Climate and Near-Future Projections. Atmospheric and Climate Sciences, [online] 4:155-163. Available:http://dx.doi.org/10.4236/acs.2014.42018. Access: 25 jun. 2016

Dickinson, R.E., A. Henderson-Sellers, & P.J. Kennedy, 1993: Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, doi:10.5065/D67W6959.

Emanuel, K.A.. 1991. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. [online] 48:2313-2329. Available: doi:10.1175/15200469(1991)048<2313:ASFRCC>2.0.CO;2. Access: 15 jan. 2015.

Gisler, C.A.F., Fisch, G., & Correa, C.S.. 2011. Análise estatistica do perfil de vento na camada limite superficial no Centro de Lançamento de Alcântara. Journal of Aerospace Technology and Management, 3(2). 193-202.

Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., & Turuncoglu, U.U.. 2012. RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7-29.

Giorgi, F., Elguindi, N., Cozzini, S. & Solmon, F.. 2015. Regional Climatic Model RegCM User’s Guide Version 4.4.

Gomes da Silva, A.F. & Fisch, G.. 2014. Avaliação do modelo WRF para a previsão do vento no centro de lançamento de Alcântara. Revista Brasileira de Meteorologia, [online] 29(2):259-270. Available:http://dx.doi.org/10.1590/S0102-77862014000200009. Access: 24 jul. 2018.

Grell, G. 1993 Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev.. 121:764-787. doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2

Hidalgo, H.G., Durán Quesada, A.M., Amador, J.A. & Alfaro, E.J. 2015, A Proposed Dynamical Mechanism Linking Pacific and Caribbean Climate. Geografiska Annaler: Series A, Physical Geography, [online] 97: 41-59. Available: doi:10.1111/geoa.12085. Access: 12 Oct. 2017.

Holtslag A.A.M., De Bruijn E.I.F. & Pan H-L, 1990. A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118:1561-1575 doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2).

Katragkou, E., García-Díez, M., Vautard, R., Sobolowski, S., Zanis, P., Alexandri, G., Jacob, D. 2015. Regional climate hindcast simulations within EURO-CORDEX: Evaluation of a WRF multi-physics ensemble. Geoscientific Model Development, [online] 8(3):603-618. Available: doi:http://dx.doi.org/10.5194/gmd-8-603-2015. Access: 13 jun. 2016.

Kotlarski, S., Keuler,K., Christensen, O. B., Colette,A., Déqué,M., Gobiet,A., Goergen,K., Jacob,D., Lüthi,D., van Meijgaard,E., Nikulin,G., Schär,C., Teichmann,C., Vautard,R., Warrach-Sagi, K. and Wulfmeyer, V. 2014 Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., [online] 7:1297-1333, Available: https://doi.org/10.5194/gmd-7-1297-2014. Access: 22 jan. 2016.

Kotlarski, S. , Szabó, P. , Herrera, S. , Räty, O. , Keuler, K. , Soares, P. M., Cardoso, R. M., Bosshard, T. , Pagé, C. , Boberg, F. , Gutiérrez, J. M., Isotta, F. A., Jaczewski, A. , Kreienkamp, F. , Liniger, M. A., Lussana, C. & Pianko Kluczyńska, K. 2017, Observational uncertainty and regional climate model evaluation: a pan European perspective. Int. J. Climatol. . doi:10.1002/joc.5249

Machado, R.D. , da Rocha, R.P. 2011. Seasonal climatic forecast over Brazil: evaluation of the RegCM3 model nested to the CPTEC/COLA global model. Revista Brasileira de Meteorologia, [online] 26(1):121–136. Available:doi:http://dx.doi.org/10.1590/S0102-77862011000100011. Access: 25 jun. 2015

Marbaix P., Gallee H., Brasseur O. & Van Ypersele J. P.. 2003. Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon.Wea. Rev., 131:461-479.

Mearns, L.O., R. Arritt, S. Biner, M.S. Bukovsky, S. McGinnis, S. Sain, D. Caya, J. Correia, D. Flory, W. Gutowski, E.S. Takle, R. Jones, R. Leung, W. Moufouma-Okia, L. McDaniel, A.M. Nunes, Y. Qian, J. Roads, L. Sloan, & M. Snyder, 2012: The North American Regional Climate Change Assessment Program: Overview of Phase I Results. Bull. Amer. Meteor. Soc., [online] 93:1337–1362, Available:doi:https://doi.org/10.1175/BAMS-D-11-00223.1 Access: 11 jul. 2016

Moura, M. do N. & Vitorino, M.I.. 2012. Variabilidade da precipitação em tempo e espaço associada à Zona de Convergência Intertropical. Rev. bras. Meteorol. [online]. 2012, 27(4):475-483. ISSN 0102-7786. http://dx.doi.org/10.1590/S0102-77862012000400010.

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., ...& Dubash, N. K.. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change.

Pal, J.S., Eltahir, E.A., & Small, E.E. 2000. Simulation of regional-scale water and energy budgets- Representation of subgrid cloud and precipitation processes within RegCM. Journal of Geophysical Research, 105(D24):29579-29594.

Prein, A. F. & Gobiet, A. 2017, Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol., [online] 37: 305-327. Available:doi:10.1002/joc.4706. Access: 23 jan. 2018.

Reboita, M.S., Da Rocha, R. P. , Ambrizzi,T. & Sugahara, S.. 2010. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim Dyn. [online]n35:1331–1347 Available:doi 10.1007/s00382-009-0668-7. Access: 15 jun. 2017.

Reboita, M.S., Amaro, T.R. & De Souza, M.R. 2017, Winds: intensity and power density simulated by RegCM4 over South America in present and future climate. Clim Dyn. [online] Available:https://doi.org/10.1007/s00382-017-3913-5. Access: 24 dec. 2017

Reboita, M.S, Rodrigues, M. & Da Rocha, R.P.. 2017b Extratropical Cyclones over Southwestern Atlantic Ocean: Present and Future Climates projected by RegCM4. Geophysical Research Abstracts, 19:EGU2017-2532.

Reboita, M.S., Dias, C.G., Dutra, L.M.M., da Rocha, R.P., Llopart, M., 2018, Previsão Climática Sazonal para o Brasil Obtida Através de Modelos Climáticos Globais e Regional. Revista Brasileira de Meteorologia, [online] 33(2):001–018. Available:doi:http://dx.doi.org/10.1590/0102-7786332001. Access: 22 jun. 2018

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., ...& Ek, M. 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185-2208.

Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535, (doi:10.1017/CBO9781107415324).

Takle, E. S., et al. 1999, Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results, J. Geophys. Res., 104(D16):19443–19461, doi:.10.1029/1999JD900352

Sulca, J. , Takahashi, K. , Espinoza, J. , Vuille, M. & Lavado‐Casimiro, W. 2018, Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol, 38: 420-435. doi:10.1002/joc.5185

Weber, N.J., & Mass, C.F. 2017. Evaluating CFSv2 Subseasonal Forecast Skill with an Emphasis on Tropical Convection. Monthly Weather Review, 145(9):3795-3815.

Vitart, F., Robertson, A.W. and Anderson, D.L.T.. 2012. Subseasonal to Seasonal Prediction Project: bridging the gap between weather and climate. WMO Bulletin 61(2).

Vitart, F., C. Ardilouze, A. Bonet, A. Brookshaw, M. Chen, C. Codorean, M. Déqué, L. Ferranti, E. Fucile, M. Fuentes, H. Hendon, J. Hodgson, H. Kang, A. Kumar, H. Lin, G. Liu, X. Liu, P. Malguzzi, I. Mallas, M. Manoussakis, D. Mastrangelo, C. MacLachlan, P. McLean, A. Minami, R. Mladek, T. Nakazawa, S. Najm, Y. Nie, M. Rixen, A.W. Robertson, P. Ruti, C. Sun, Y. Takaya, M. Tolstykh, F. Venuti, D. Waliser, S. Woolnough, T. Wu, D. Won, H. Xiao, R. Zaripov, & L. Zhang, 2017: The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Amer. Meteor. Soc., 98:163–173, [online] Available:https://doi.org/10.1175/BAMS-D-16-0017.1. Access: 16 jul. 2018.

Zeng X., Zhao M. & Dickinson R.E. 1998, Intercomparison of Bulk Aerodynamic algorithms for the computation of Sea surface fluxes using TOGA COARE and TAO data. Journal of Climate. [online] 11:2628-2644. Available:doi:10.1175/1520 0442(1998)011<2628:10BAAF>2.0.CO;2. Access: 12 jun. 2017.




DOI: https://doi.org/10.26848/rbgf.v11.6.p1963-1970

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License