Análise de tendências de índice de vegetação (IV) MODIS na bacia do Paraíba do Sul (Modis Vegetation Index trend analysis in Paraíba do Sul basin)

Pedro José Farias Fernandes, Raul Sanchez Vicens, Raphael Girão, Luiz Felipe de Almeida Furtado

Resumo


O objetivo é identificar tendências na cobertura vegetal da bacia do Paraíba do Sul a partir de Índice de Vegetação (IV) MODIS no período 2000-2015. Para escolher entre NDVI e EVI, foi feita uma análise de correlação entre cada IV e a série TRMM. Para comparar as técnicas de tendências de regressão linear (LM) e Mann-Kendall (MK), os seguintes cálculos foram feitos para cada técnica: tendências das médias anuais, tendências das médias calculadas para cada um dos 12 meses, e tendências com a série temporal completa (para o teste MK, com e sem a aplicação da remoção da sazonalidade e da autocorrelação serial). Finalmente, tentou-se identificar os tipos de tendências a partir da correlação IVxTRMM e do algoritmo DBEST de segmentação temporal. O EVI apresentou maior valor médio de r² com dados TRMM (r²=0,30). As técnicas apresentaram padrão espacial semelhante, e no caso das tendências calculadas a partir de médias anuais por LM, o padrão espacial foi similar ao teste MK com remoção da sazonalidade e autocorrelação serial (Kappa de 0,501) sem mascarar tendências verdadeiras. Percebe-se tendências de redução do EVI nos meses mais quentes, e de aumento nos meses mais frios. De maneira geral, as médias anuais de EVI estão diminuindo em algumas áreas da bacia, como a Serra do Mar. A correlação entre o EVIxTRMM mostrou-se simplista para a identificação das tendências, e as mudanças abruptas identificadas pelo DBEST ocupam, aproximadamente, 1,82% da bacia, e as mudanças não abruptas abrigam 13,15% da bacia.




 

A B S T R A C T

 

This study aims to identify trends in vegetation cover of Paraíba do Sul basin using MODIS Vegetation Index (VI) in the 2000-2015 period. To choose between NDVI and EVI, a correlation analysis was performed between each IV and the TRMM serie. In order to compare linear regression (LM) and Mann-Kendall (MK) trends, the following calculations were made for each technique: annual mean trends, trends for each of the 12 months, and trends for the whole VI serie (for the MK test, calculations were made with and without seasonality and serial autocorrelation removal). Finally, attempts to classify trends were made using IVxTRMM correlation and the DBEST algorithm of temporal segmentation. EVI showed a higher mean value of r² with TRMM data (r² = 0.30). The spatial pattern was similar between trend techniques. The annual mean linear regression spatial pattern was similar to the MK test with the seasonality and serial autocorrelation removal (Kappa of 0.501) without masking true trends. Browning trends (EVI reduction) were detected in the warmer months, and greening, in the cooler months. In general, the EVI annual mean is decreasing in some basin, such as Serra do Mar. The EVIxTRMM correlation was simplistic for trend identification. The abrupt changes identified by DBEST algorithm occupy, approximately, 1,82% of basin area, and non-abrupt changes, 13.15% of the basin.

 

Keywords:  Trends, EVI, MODIS



Texto completo:

PDF

Referências


Allen, C. D., Breshears, D. D., Mcdowell, N. G., 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere 6, 1-55.

Appelhans, T. et al., 2015. remote: Empirical orthogonal teleconnections in r. J. Stat. Software 65, 1-9.

Bayazit, M., Önöz, B., 2007. To prewhiten or not to prewhiten in trend analysis?. Hydrological Sciences Journal 52, 611-624.

Beck, H. E. et al., 2011. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sensing of Environment 115, 2547-2563.

Beurs, K. M., Henebry, G. M., Owsley, B. C., Sokolik, I., 2015 Using multiple remote perspectives to identify and attribute land surface dynamics in Central Asia 2001-2013. Remote Sensing of Environtment 170, 48-61.

Chen, B., Xu, G., Coops, N. C., Ciais, P., Innes, J. L., Wang, G., Myeni, R. B, Wang, T., Krzyzanowski, J., Li, Q., Cao, L., Liu, Y., 2014. Changes in vegetation phtosynthetic activity trend across the Asia-Pacific region over the last three decades. Remote Sensing of Environment 144, 28-41.

Chen, G., Hay, G. J., Carvalho, L. M. T., Wulder, M. A., 2012 Object based change detection. International Journal of Remote Sensing 33,4434-4457.

Detsch, F., Otte, I., Appelhans, T., Hemp, A., Nauss, T., 2016, Seasonal and long-term vegetation dynamics from 1-km GIMMS-based NDVI time series at Mt. Kilimanjaro, Tanzania. Remote Sensing of Environment 178, 70-83.

Detsch, F. et al., 2016. A Comparative Study of Cross-Product NDVI Dynamics in the Kilimanjaro Region—A Matter of Sensor, Degradation Calibration, and Significance. Remote Sensing, 8,159-170.

Didan, K. et al. 2015. MODIS vegetation index user’s guide (MOD13 Series). University of Arizona: Vegetation Index and Phenology Lab.

Eastman, J. R. et al. 2013. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sensing 5, 4799-4818.

Eckert, S. et al., 2015. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. Journal of Arid Environments 13,16-28.

Fensholt, R., Rasmussen, J., Nielsen, T. M., Mbow, C. 2009. Evaluation of earth observation based long term vegetation trends - intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, TERRA MODIS and SPOT VGT data. Remote Sensing of Environment 113, 1886-1898.

Fernandes, P. J. F., Vicens, R. S., Furtado, L. F. 2018. Comparação de algoritmos de filtragem em séries temporais de NDVI/MODIS. Revista Brasileira de Cartografia 70, 867-905.

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S. R., Reichstein, M. 2013. Trend change detection in NDVI time series: effects of inter-anual variability and methodology. Remote Sensing 5, 2113-2144.

Goltz, E., Brandão, D., Tomás, L., Mantelli, L. R., Adami, M., Shimabukuro, Y. E., Formaggio, A. R., 2007. Utilização De Índices Espectrais De Vegetação Do Sensor Modis Na Determinação De Áreas Suscetíveis a Alagamento No Pantanal Sulmatogrossense. Revista Brasileira de Cartografia 59, 35-44.

Guay, K. C. et al. 2014. Vegetation productivity patterns at high northern latitudes: a multi‐sensor satellite data assessment. Global Change Biology 20, 3147-3158.

Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W., 2015. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics, Remote Sensing of Environment 170, 121-132.

Hilker, T. et al., 2014. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Global Change Biology 20, 418-428.

Jamali, S., Jonsson, P., Eklundh, L., Ardo, J., Seaquist, J, 2015. Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment 156,182-195.

Jong, R., Bruin, S., Wit, A., Schaepman, M. E., Dent, D. L., 2011. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment 115, 692-702.

Jong, R., Bruin, S., 2012. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9, 71-77.

Ju, J., Masek, J. G., 2016. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment 176, 1-16.

Karkauskaite, P., Tagesson, T., Fensholt, R., 2017. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sensing 9, 485-497.

Lara, M. J., 2018. et al. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska. Nature: Scientific data 5, 180058.

Marengo, J. A., Alves, L. M., 2005. Tendências hidrológicas da bacia do rio Paraíba do Sul. Revista Brasileira de Meteorologia 20, 215-226.

Mildrexler, D., Yang, Z., Cohen, W. B., Bell, M. D., 2016. A forest vulnerability index based on drought and high temperatures. Remote Sensing of Environtment 173, 314-325.

Mishra, N. B., Crews, K. A., Neeti, N., Meyer, T., Young, K. R., 2015. MODIS derived vegetation greenness trends in African Savanna: desconstructing and localizing the role of changing moisture availability, fire regime and anthropogenic impact. Remote Sensing of Environment 169, 192-204.

Neeti, N., Eastman, J. R. 2011. A contextual mann‐kendall approach for the assessment of trend significance in image time series. Transactions in GIS 15, 599-611.

Oliveira, J. C., Epiphanio, J. C. N., Rennó, C. D., 2014. Window regression: A spatial-temporal analysis to estimate pixels classified as low-quality in MODIS NDVI time series. Remote Sensing 6, 3123-3142.

Ovalle, A. R. C., Silva, C. F., Rezende, C. E., Gatts, C. E. N., Suzuki, M. S., Figueiredo, R. O., 2013. Long-term trends in hydrochemistry in the Paraíba do Sul River, southeastern Brazil. Journal of Hydrology 481,191-203.

Roodposhti, M. S., 2017. Drought sensitivity mapping using two one-class support vector machine algorithms. Atmospheric Research 193, 73-82.

Saito, N. S., 2015. Identificação de áreas com tendência a desertificação no estado do Espírito Santo com o auxílio de geotecnologias. Tese (Doutorado em Sensoriamento Remoto). São José dos Campos, Instituto Nacional de Pesquisas Espaciais (INPE),

Salviano, M. F., Groppo, J. D., Pellegrino, G. Q., 2016 Análise de tendências em dados de precipitações e temperatura no Brasil. Revista Brasileira de Meteorologia 31, 64-73.

Shi, H. et al., 2017. Assessing the ability of MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover types. Ecological indicators 72, 153-164.

Sonnenschein, R., Kuemmerle, T., Udelhoven, T., Stellmes, M., Hostert, P. Differences in Landsat-based trend analyses in dryland due to the choice of vegetation estimate. Remote

Sensing of Environment 115, 1408-1420.

Tomov, H. D. Automated temporal NDVI analysis over the Middle East for the period 1982 – 2010. 2016.. Dissertação (Mestrado em Geographical Information Science) - Lund University, Suécia.

Van Leeuwen, W. J. D. et al., 2013. Trends and ENSO/AAO driven variability in NDVI derived productivity and phenology alongside the Andes Mountains. Remote Sensing 5, 1177-1203.

Wang, X. L., Swail, V. R., 2002. Trends of Atlantic wave extremes as simulated in a 40-yr wave hindcast using kinematically reanalyzed wind fields. Journal of Climate 15, 1020-1035.

Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of hydrology 259, 254-271.

Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., Piao, S., Chen, H, Vermote, E. F., Song, C., Hwang, T., 2014. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86-90.

Zoungrana, J. B. et al. Land use/cover response to rainfall variability: A comparing analysis between NDVI and EVI in the Southwest of Burkina Faso. Climate 3, 63-77.




DOI: https://doi.org/10.26848/rbgf.v12.4.p1600-1618

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License