Impact of coffee biochar on soil carbon, microbial biomass and enzymatic activities in Semiarid Entisol cultivated with maize

Argemiro Pereira Martins Filho, ERIKA Valente de medeiros, José Romualdo de Sousa Lima, Gustavo Pereira Duda, Wendson de Moraes Silva, Antônio Celso Dantas Antonino, Jenifer Sthephanie Araújo da Silva, Julyana Braga de Oliveira, Claude Hammecker

Resumo


The use of biochar can bring benefits such as long-term carbon sequestration and water use efficiency, being an alternative for semiarid regions. The objective of this study was to evaluate the impact of the application of coffee biochar on sandy soil on maize growth, chemical, microbial and biochemical attributes in Entisol. The experimental design was completely randomized, distributed in a 2 x 4 + 1 factorial scheme, two types of wastes coffee ground (MCG) and coffee husks (MCH), four doses (4, 8, 12 and 16 Mg ha-1) and control (CONT), without biochar. All treatments received organic fertilization with manure. Coffee biochar applied to sandy soil cultivated with maize, as predicted, increased the total soil C content, mainly coffee husk biochar that increases twice the C content when compared to the control. Nutrient and some enzyme activities of soils were improved with increasing coffee biochar doses. Microbial biomass of soils amended with the biochars MCH16 and MCH12 showed an increase of 100 and 116%, respectively. This study demonstrated a clear response of the soil nutrients, microbial community and enzyme activities change to types and doses of biochar. However, the effects on the actual maize plant growth with these biochar treatments were not significative  in the first cycle.

 

Impacto do biochar de café sobre o carbono, biomassa microbiana e atividades enzimáticas de solo arenoso do semi-árido, cultivado com milho

R E S U M O

O uso do biochar pode trazer benefícios como o sequestro de carbono a longo prazo e a eficiência do uso da água, sendo uma alternativa para regiões semi-áridas. O objetivo deste estudo foi avaliar o impacto da aplicação de biochar oriundos de resíduos de café aplicado em solo arenoso sobre o crescimento de milho, atributos químicos, microbianos e bioquímicos. O delineamento experimental utilizado foi inteiramente casualizado, distribuído em esquema fatorial 2 x 4 + 1, sendo dois tipos de resíduos de café: borra (MCG) e casca de café (MCH), quatro doses (4, 8, 12 e 16 Mg ha-1) e controle (CONT), sem biochar. Todos os tratamentos receberam adubação orgânica com esterco bovino. O biochar de café aplicado em solo arenoso cultivado com milho, conforme previsto, aumentou o teor total de C no solo, principalmente o biochar de casca de café, que aumentou em dobro do teor de C, comparado ao controle. Os teores de nutrientes e algumas atividades enzimáticas dos solos foram aumentados com o aumento das doses de biochar de café. Solos que receberam os tratamentos MCH16 e MCH12 aumentaram a biomassa microbiana em 100 e 116%, respectivamente. Este estudo demonstrou uma clara resposta dos nutrientes do solo, comunidade microbiana e atividades enzimáticas relativos aos tipos e doses de biochar. Por isso, recomenda-se o uso do biochar de café para o aumento da qualidade de solos arenosos no semi-árido brasileiro.

Palavras-chave: Zea mays, enzima extracelular do solo, carbono orgânico total, biomassa microbiana do solo.

 


Palavras-chave


extracellular soil enzyme; soil total organic carbon; soil microbial biomass.

Texto completo:

PDF (English)

Referências


Agegnehu, G., Nelson, N., Bird, M.I., 2016. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on nitisols. Soil Tillage Res. 160, 1–13. http://dx.doi.org/10.1016/j.still.2016.02.003

Al marzooqi, F., Yousef, L. F. 2017. Biological response of a sandy soil treated with biochar derived from a halophyte (Salimaizeia bigelovii). Appl. Soil Ecol., 114, 9-15. http://dx.doi.org/ 10.1016/j.apsoil.2017.02.012

Atkinson, C. J., Fitzgerald, J. D., Hipps, N.A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant soil, 337, 1-18. http://dx.doi.org/ 10.1007/s11104-010-0464-5

Bailey, V. L., Fansler, S. J., Smith, J. L., Bolton, H. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem., 43, 296-301. http://dx.doi.org/ 10.1016/j.soilbio.2010.10.014

Bartlett, R.J., Ross, D.S., 1988. Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Sci. Soc. Am. J., 52, 191-1192. http://dx.doi.org/10.2136/sssaj1988.03615995005200040055x

Bera, T., Collins, H. P., Alva, A. K., Purakayastha, T. J., Patra, A. K. 2016. Biochar and manure effluent effects on soil biochemical properties under maize production. Appl. Soil Ecol., 107, 360-367. http://dx.doi.org/ 10.1016/j.apsoil.2016.07.011

Bhaduri, D., Saha, A., Desai, D., Meena, H. N. 2016. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere, 148, 86-98. http://dx.doi.org/ 10.1016/j.chemosphere.2015.12.130

Biederman, L. A., Harpole, W. S. 2013. Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. GCB bioenergy, 5, 202-214. http://dx.doi.org/ 10.1111/gcbb.12037

Bird, M. 2015. Test procedures for biochar analysis in soils. In Biochar for Environmental Management: Science, Technology and Implementation. J. Lehmann, S. Joseph Ed. Routledge.

Bird, M. I., McBeath, A. V., Ascough, P. L., Levchenko, V. A., Wurster, C. M., Munksgaard, N. C., Williams, A. 2017. Loss and gain of carbon during char degradation. Soil Biol. Biochem., 106, 80-89. http://dx.doi.org/ 10.1016/j.soilbio.2016.12.012

Chen, W. D., Hoitink, H. A., Schmitthenner, A. F., Tuovinen, O. H., 1988. The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology, 78, 314-322. http://dx.doi.org/ 10.1094/Phyto-78-314

Chintala, R., Schumacher, T. E., Kumar, S., Malo, D. D., Rice, J. A., Bleakley, B., Gu, Z. R. 2014. Molecular characterization of biochars and their influence on microbiological properties of soil. J. hazardous mat., 279, 244-256. http://dx.doi.org/ 10.1016/j.jhazmat.2014.06.074

Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A. R., Gallucci, F., Monarca, D. 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Ren. Sust. Energy Rev., 64, 187-194. http://dx.doi.org/ 10.1016/j.rser.2016.06.003

Demisie, W., Liu, Z., Zhang, M. 2014. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena. 121, 214–221. http://dx.doi.org/ 10.1016/j.catena.2014.05.020

Eivazi, F., Tabatabai, M.A., 1977. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172. http://dx.doi.org/10.1016/0038-0717(77)90070-0

Eivazi, F., Tabatabai, M. A., 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem., 20, 601-606. http://dx.doi.org/ 10.1016/0038-0717(88)90141-1

Elzobair, K. A., Stromberger, M. E., Ippolito, J. A., Lentz, R. D. 2016. Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol. Chemosphere, v. 142, p. 145-152 http://dx.doi.org/ 10.1016/j.chemosphere.2015.06.044.

Embrapa. Manual de Análises Químicas de Solos, Plantas e Fertilizantes. Brasília DF: Embrapa. 2º Ed., p. 627, 2009.

Foster, E. J., Hansen, N., Wallenstein, M., Cotrufo, M. F. 2016. Biochar and manure amendments impact soil nutrients and microbial enzymatic activities in a semi-arid irrigated maize cropping system. Agric. Ecosyst. Environ., 233, 404-414. http://dx.doi.org/ 10.1016/j.agee.2016.09.029

Franchini, J. C., Debiasi, H., Sacoman, A., Nepomuceno, A. L., Farias, J. R. B. 2009, Manejo do solo para redução das perdas de produtividade pela seca. Documentos, Embrapa Soja, Londrina, 39p.

Gianfreda, L., Ruggiero, P., 2006. Enzyme activities in soil. In: Nannipieri, P., Smalla, K. (Eds.), Nucleic Acids and Proteins in Soil. Soil Biology. Springer-Verlag, Berlin, Heidelberg, pp. 257–311.

Hartley, W., Riby, P., Waterson, J. 2016. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. J. environ. manag., 181, 770-778. http://dx.doi.org/ 10.1016/j.jenvman.2016.07.023

Hupfauf, B., Hämmerle, T., Lepuschitz, M. 2016. Plant growth tests and the issue of the analysis of PAHs with biochar from gasifier plants. En. Procedia, 93, 9-13. http://dx.doi.org/ 10.1016/j.egypro.2016.07.142

Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S. Siddique, K. H. 2017. Biochar for crop production: potential benefits and risks. J. Soils Sedim., 17, 685-716. http://dx.doi.org/ 10.1007/s11368-016-1360-2

Ippolito, J. A., Stromberger, M. E., Lentz, R. D., Dungan, R. S. 2014. Hardwood biochar influences calcareous soil physicochemical and microbiological status. J. environ. quality, 43, 681-689.http://dx.doi.org/ 10.2134/jeq2013.08.0324

Jiang, S., Huang, J., Lu, H., Liu, J., Yan, C. 2016. Optimisation for assay of fluorescein diacetate hydrolytic activity as a sensitive tool to evaluate impacts of pollutants and nutrients on microbial activity in coastal sediments. Mar. pol. bulletin, 110, 424-431. http://dx.doi.org/ 10.1016/j.marpolbul.2016.06.031

Jindo, K., Suto, K., Matsumoto, K., García, C., Sonoki, T., Sanchez-Monedero, M. A. 2012. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Biores. technology, 110, 396-404. http://dx.doi.org/ 10.1016/j.biortech.2012.01.120

Kandeler, E., Gerber, H., 1988. Short-term assay of soil urease activity using color-imetric determination of ammonium. Biol. Fertil. Soils, 6, 68-72.

http://dx.doi.org/10.1007/BF00257924

Khadem, A., Raiesi, F. 2017. Responses of microbial performance and community to maize biochar in calcareous sandy and clayey soils. Appl. Soil Ecol., 114, 16-27. http://dx.doi.org/ 10.1016/j.apsoil.2017.02.018

Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., Crowley, D. 2011. Biochar effects on soil biota–a review. Soil Biol. Biochem., 43, 1812-1836. http://dx.doi.org/ 10.1016/j.soilbio.2011.04.022

Li, S., Liang, C., Shangguan, Z. 2017. Effects of apple branch biochar on soil C mineralization and nutrient cycling under two levels of N. Sci. Total Environ., 607, 109-119. http://dx.doi.org/ 10.1016/j.scitotenv.2017.06.275

Lima, J. R. S., Silva, W. M., Medeiros, E. V., Duda, G. P., Corrêa, M. M., Martins Filho, A. P., Clermont-Dauphin, C., Antonino, A. C. D., Hammecker, C. 2018. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma, 319, 14 - 23. http://dx.doi.org/ 10.1016/j.geoderma.2013.06.016

Luo, L., Guo, J. D. 2016. Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. Journal of environmental management, 182, 29-36.

http://dx.doi.org/ 10.1016/j.jenvman.2016.07.040

Mendonça, E. S,; Matos, E. S. Matéria orgânica do solo: Métodos de análises. Viçosa: UFV, p.86-92, 2005.

Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Marinari, S. A. R. A. 2012. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils, 48, 743-762. http://dx.doi.org/ 10.1007/s00374-012-0723-0

Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., Khanal, S. K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource technology. v. 246, p. 110- 122. http://dx.doi.org/ 10.1016/j.biortech.2017.08.122

Pointing, S.B., Belnap, J., 2012. Microbial colonization and controls in dryland systems. Nat.Rev. Microbiol., 10 (8):551–562. http://dx.doi.org/10.1038/nrmicro2831

Prakongkep, N., Gilkes, R. J., Wiriyakitnateekul, W. 2015. Forms and solubility of plant nutrient elements in tropical plant waste biochars. J. Plant Nutri. Soil Sci., 178, 732-740. http://dx.doi.org/ 10.1002/jpln.201500001

Santos, J. C. B. D., Souza Júnior, V. S. D., Corrêa, M. M., Ribeiro, M. R., Almeida, M. D. C. D., Borges, L. E. P. 2012. Caracterização de neossolos regolíticos da região semiárida do Estado de Pernambuco. Rev. Bras. Ciê. solo, 36, 683-696. http://dx.doi.org/ 10.1590/S0100-06832012000300001

Sarma, B., Borkotoki, B., Narzari, R., Kataki, R., Gogoi, N. 2017. Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil. J. Cleaner Prod., 152, 157-166.http://dx.doi.org/ 10.1016/j.jclepro.2017.03.124

Shao, X., Zheng, J. 2014. Soil organic carbon, black carbon, and enzyme activity under long-term fertilization. J. Integ. Agricult., 13, 517-524. http://dx.doi.org/ 10.1016/S2095-3119(13)60707-8

Sohi, S. P., Krull, E., Lopez-Capel, E., Bol, R. 2010. A review of biochar and its use and function in soil. Adv. agronomy, 105, 47-82. http://dx.doi.org/ 10.1016/S0065-2113(10)05002-9

Song, D., Xi, X., Huang, S., Liang, G., Sun, J., Zhou, W., Wang, X. 2016. Short-term responses of soil respiration and C-cycle enzyme activities to additions of biochar and urea in a calcareous soil. PloS one, 11(9), e0161694. http://dx.doi.org/ 10.1371/journal.pone.0161694

Tate, K. R.; Ross, D. J.; Feltham, C. W., 1988. A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., Oxford, 20, 329-335. http://dx.doi.org/ 10.1016/0038-0717(88)90013-2

Upadhyay, K. P., George, D., Swift, R. S., Galea, V. 2014. The influence of biochar on growth of lettuce and potato. J. Integ. Agriculture, 13, 541-546. http://dx.doi.org/ 10.1016/S2095-3119(13)60710-8

Vance, E. D.; Brooks, P. C.; Jenkinson, D. S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19, 703-707. http://dx.doi.org/ 10.1016/0038-0717(87)90052-6

Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C., Zhou, W., 2015. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Appl. Soil Ecol., 96, 265-272. http://dx.doi.org/ 10.1016/j.apsoil.2015.08.018

Yang, X., Meng, J., Lan, Y., Chen, W., Yang, T., Yuan, J., Han, J. 2017. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ., 240, 24-31. http://dx.doi.org/ 10.1007/s11356-017-8500-0

Yeomans, J.C., Bremner, J.M., 1988. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plan. 19, 1467-1476. http://dx.doi.org/ 10.1080/00103628809368027

Zhao, L., Cao, X., Mašek, O., Zimmerman, A. 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. hazardous materials, 256, 1-9.

http://dx.doi.org/ 10.1016/j.jhazmat.2013.04.015

Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., Zhang, A. 2017. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Envir. Sci. Pol. Res., 24, 10108-10120. http://dx.doi.org/

Zhu, L. X., Xiao, Q., Cheng, H. Y., Shi, B. J., Shen, Y. F., Li, S. Q. 2017. Seasonal dynamics of soil microbial activity after biochar addition in a dryland maize field in North-Western China. Ecological Engineering, 104,141-149 http://dx.doi.org/ 10.1016/j.ecoleng.2

04.026.




DOI: https://doi.org/10.26848/rbgf.v13.3.p903-914

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License