Reference Evapotranspiration in the State of Paraíba, Brazil: Climatic Trends and Influencing Factors

Robson de Sousa Nascimento, José Ivaldo Barbosa de Brito, Valéria Peixoto Borges, Péricles de Farias Borges, Lázaro de Souto Araújo

Resumo


Reference evapotranspiration (ET0) plays an important role in the planning of irrigation and the water demand of crops, as well as in the planning of water uses in watershes. The identification of trends in ET0 under climate changes is important to understand its effects on agriculture, water balance and water resources planning. The goal of this work was verify whether there was or there was not an increasing/decreasing trend on ET0 in dry and rainy periods, as well as in annual period, identifying the influencing climate variables on ET0 in the state of Paraíba, Brazil. In order to determine the ET0 trend in the series the Mann-Kendall nonparametric test was used, whereas the series slope was determined by applying Sen’s estimator. To identify the most influencing clilmatic variable it was performed a multiple regression of normalized data. The data were obtained of six stations with monthly data from January 1961 to December 2015, a total period of 55 years. Results showed increasing on ET0 in almost all stations during the study period, except for a single of them in which there was a decreasing. The most dominant variables influencing the trend on ET0 was air temperature during annual time scale, while during the rainy and dry seasons there was an alternation between the most influencing variables (air temperature and sunshine duration).


Palavras-chave


climate variables, Mann-Kendall test, climate change

Texto completo:

PDF

Referências


Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper, 56, FAO, Rome.

Dantas, L.G., Santos, C.A.C., Olinda, R.A., 2015. Trends in Annual and Seasonal Temperature and Precipitation Extremes in Campina Grande – PB. Revista Brasileira de Meteorologia 30, 423-434.

https://doi.org/10.1590/0102-778620130088

Elouissi, A., Habi, M., Benaricha, B., Boualem, S. A., 2017. Climate change impact on rainfall spatio-temporal variability (Macta watershed case, Algeria). Arabian Journal Geoscience 10, 496. https://doi.org/10.1007/s12517-017-3264-x

Fan, J., Wu, L., Zhang, F., Xiang, Y., Zheng, J., 2016. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. Journal of. Hydrology 542, 923–937.

https://doi.org/10.1016/j.jhydrol.2016.09.060.

Fisher, J.B., Melton, F., Middleton, E. et al., 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resource Research 53, 2618–2626. https://doi.org/10.1002/2016WR020175

Gao, Z., He, J., Dong, K., Li, X., 2017. Trends in reference evapotranspiration and their causative factors inthe West Liao River basin, China. Agricultural and Forest Meteorology 232, 106–117. http://dx.doi.org/10.1016/j.agrformet.2016.08.006

Geng, Q., Wu, P., Zhao, X., 2016. Spatial and temporal trends in climatic variables in arid areas of northwest China. International Journal of Climatology 36, 4118-4129. https://doi.org/10.1002/joc.4621

Gharbia, S. S. , Smullen, T. , Gill, Laurence, Johnston P., Pilla, F., 2018. Spatially distributed potential evapotranspiration modeling and climate projections. Science of The Total Environment 633, 571-592.

Hao, L., Huang, X., Qin, M., Liu, Y., Li, W., Sun, G., 2018. Ecohydrological Processes Explain Urban Dry Island Effects in a Wet Region, Southern China. Water Resource Research 54, 6757-71. https://doi.org/10.1029/2018WR023002

Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837

Jinlin, Z., Zhiqiang, G., Zhihuan, S., Furong, G., 2018. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Annual Reviews in Control 46, 107-133. https://doi.org/10.1016/j.arcontrol.2018.09.003

Kang, S., Im, E., Eltahir, E.A.B., 2019. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent. Climate Dynamics 52, 747–764. https://doi.org/10.1007/s00382-018-4164-9

Kendall, M.G., 1975. Rank correlation methods, 4 ed. Griffin, London.

Kundu, S., Khare, D., Mondal, A., 2017. Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India. Theoretical and Applied Climatology 130, 879-900. https://doi.org/10.1007/s00704-016-1924-5

Li, C., Wu,P. T., Li, X. L., Zhou, T. W., Sun, S. K., Wang, Y. B., Luan, X. B., Yu, X., 2017a. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Science of the Total Environment 589, 165–172. http://dx.doi.org/10.1016/j.scitotenv.2017.02.122

Li, G., Zhang, F., Jing, Y., Liu, Y., Sun, G. , 2017b. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Science of The Total Environment 596–597, 256-265. https://doi.org/10.1016/j.scitotenv.2017.04.080

Li, M., Chu, R., Shen, S., Islam, A. R., 2018. Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China. Water 10, 144. https://doi.org/10.3390/w10020144

Liu, Y. J., Chen, J., Pan, T., 2019. Analysis of Changes in Reference Evapotranspiration, Pan Evaporation, and Actual Evapotranspiration and Their Influencing Factors in the North China Plain During 1998–2005. Earth and Space Science 6, 1366–1377. https://doi.org/10.1029/2019EA000626

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259. https://doi.org/10.2307/1907187

Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. Science Advances 2, e1500323. https://doi.org/10.1126/sciadv.1500323

Mendes, T.G.L., Anjos, R.S., Santos, T.N., Moreira, A.B., Nóbrega, R.S., 2019. Abordagem científica sobre ilhas de calor em Recife-PE. Journal of Environmental Analysis and Progress 4, 1-13. https://doi.org/10.24221/jeap.4.1.2019.2058.001-013

Moreira, E.B.M., Nóbrega, R.S., Silva, B.B., Ribeiro, E.P., 2017. O Modelo Sebal para Estudos de Clima Intraurbano: Aplicação em Recife, Pernambuco. Ra’e Ga 39, 247-265. https://doi.org/10.5380/raega

Nóbrega, J.N., Santos, C.A.C., Gomes, O.M., Bezerra, B.G., Brito, J.I.B., 2014. Extreme precipitation events in the mesoregions of Paraíba and its relationship with the tropical oceans SST. Revista Brasileira de Meteorologia 29, 197-208. https://doi.org/10.1590/S0102-77862014000200005

Oliveira, L.L., Sousa, C., Costa Barreto, N.J., Santos, G.P., Almeida, R.M., 2018. Ilha de calor urbana: diagnóstico como ferramenta de gestão ambiental urbana para a cidade de Santarém (PA). Revista Ibero-Americana de Ciências Ambientais 9, 427-443. https://doi.org/10.6008/CBPC2179-6858.2018.006.0038.

Pandey, K., Khare, D., 2018. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Global and Planetary Change 161, 172-182. https://doi.org/10.1016/j.gloplacha.2017.12.017

Pettitt, A., 1979. A nonparametric approach to the change-point problem. Applied Statistics 28, 126–135. https://doi.org/10.2307/2346729

PROJETO MAPBIOMAS. Projeto de Mapeamento Anual da Cobertura e Uso do Solo do Brasil. MapBiomas v.3.0. Available: http://mapbiomas.org/map#coverage. Access in 09/12/2018

SEN, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statisitical Association 63, 1379-1389. . https://doi.org/10.1080/01621459.1968.10480934

She, D., Xia, J., Zhang, Y., 2017. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Science of the Total Environment 607–608, 1151–1162. http://dx.doi.org/10.1016/j.scitotenv.2017.07.007

Silva, M. P., Tarifa, J. R., 2017. Ritmo da Temperatura no Clima Local da Cidade de Cuiabá-Várzea Grande (Mt): Uma Análise Secular (1912 A 2012). Biodiversidade 16, 2-20.

Sobreira, L.C., Leder, S.M., Silva, F.A.G., Rosa, P.R.O., 2011. Expansão urbana e variações mesoclimáticas em João Pessoa, PB. Ambiente Construído 11, 125-138. https://doi.org/10.1590/S1678-86212011000200009

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review 38, 55-94. https://doi.org/10.2307/210739

Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z., Li, J., 2017. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of Hydrology 544, 97–108. https://doi.org/10.1016/j. jhydrol.2016.11.021.

Wu, F., Wang, X., Cai, Y., Li, C., 2016. Spatiotemporal analysis of precipitation trends under climate change in the upper reach of Mekong River basin. Quaternary International 392, 137-146. https://doi.org/10.1016/j.quaint.2013.05.049




DOI: https://doi.org/10.26848/rbgf.v13.3.p1024-1034

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License