Submerged Macrophytes, Phytoplankton and Zooplankton in Tropical Reservoir

Cacilda Michele Cardoso Rocha, Débora Maciel B. Lima, Maristela Casé Costa Cunha, Jarcilene Silva Almeida

Resumo


Submerged macrophytes, zooplankton and phytoplankton surround reservoirs are still need knowledge about ecology and influence in water quality in reservoirs of America Latina. The control of the biomass formation, low nutrient loadings, algal growth and diversity are key points to acquire water quality. We investigated evidences of submerged macrophytes enhance water quality and planktonic assemblages in two bays surround reservoir. Samples for water transparency, nutrients (phosphorus and nitrogen mg/L-1), phytoplankton, and zooplankton were collected between littoral with macrophytes and limnetic areas. Analyses with Standard Protocols were applied to make comparisons of these parameters. Our data show both bays are Eutrophized, the Secchi disk value was high (3.8 and 3.9 m), low concentration of phosphorus (means= 0.03 and 0.05 mg/L-1) and nitrogen (0.4 and 0.9 mg/L-1). Chlorophyll-a exhibited high biomass formation during the dry period (49 and 61 μg/ L-1). Egeria densa cover a wide range in littoral areas (66% and 40%). Phytoplankton was represented by 13 species, including Cyanophyta (5,292 to 717 cell /mL-1) in high densities. Zooplankton comprised 77 species of Rotifera, 18 of Cladocera and three Copepoda, and densities varied between 3,711 and 2,232 org.m-3 in the littoral areas. The Re-oligotrophication and restoration of these bays can be used combining biological methods knowledge and technical experimentation. New approaches to adapted management measures to advance research and to improve water quality is a next step in a near future of reservoirs from Northeast Brazil

Palavras-chave


INNOVATE, Trophic interactions, Water quality, São Francisco River, Semi-arid

Referências


Anagnostidis, K; Komárek, J. 1988. Modern approach to the classification system of cyanophytes. 3 – Oscillatoriales. Algological Studies /Archiv für Hydrobiologie, v. 80, n. 50–53, p. 327–472.

Andrade, e. m. de et al., 2017. Chapter 10 Water as Capital and Its Uses in the Caatinga. In: FERRAZ, J. M.; Leal, I. R.; Tabarelli, M. (Eds.). 2016. Caatinga: The Largest Tropical Dry Forest Region in South America. Recife-PE: Springer International Publishing AG, p. 283–302.

APHA. 4500-Oxygen (Dissolved)- Iodomatric Methods. 2005.In: American Public Health Association (Ed.). Standard Methods for The Examination of Water and Wastewater. Washington, D.C., USA: [s.n.]. p. 136–143.

APHA. 4500-Nitrogen. 2005. In: American Public Health Association (Ed.). Standard Methods for The Examination of Water and Wastewater. 21 st ed. Washington, D.C., USA: [s.n.]. p. 103–108.

APHA. 4500-P-Phosphorus. 2005. In: American Public Health Association (Ed.). Standard Methods for The Examination of Water and Wastewater. Washington, D.C., USA: [s.n.]. p. 146–162.

APHA. 10200 Plankton: Sample Collection.2005. In: American Public Health Association (Ed.). Standard Methods for The Examination of Water and Wastewater. Washington, D.C., USA: [s.n.]. p. 2–31.

Brandão, C. et al., 2011.Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. 2. ed. São Paulo: CETESB.

Brito, S. et al., 2011. Zooplankton as an indicator of trophic conditions in two large reservoirs in Brazil. Lakes and Reservoirs: Research and Management, v. 16, n. 4, p. 253–264.

Buchheim, M. .; Michalopulos, E. A.; Buchheim, J. A. 2001. Phylogeny of the Chlorophyceae with special reference to the Sphaeropleales: a study of 18S and 26S rDNA data. Journal of Phycology, v. 37, p. 819–835.

Carlson, R. E. A trophic state index for lakes ‘.1977. Limnology and oceanography, v. 22, n. 2, p. 361–369.

Carpenter, A. S. R. et al., 1987. Regulation of Lake Primary Productivity by Food Web Structure. Ecology, v. 68, n. 6, p. 1863–1876.

Carpenter, S.; Kitchell, J.; Hodgson, J. 1985. Cascading Trophic Interactions and Lake Productivity. BioScience, v. 35, n. 10, p. 634–639.

Carpenter, S.; Lodge, D. 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany, p. 341–370.

Cavalier-Smith, T. 2004. Only six kingdoms of life. Proceedings of the Royal Society of London. Series B: Biological Sciences, v. 271, n. 1545, p. 1251–1262, 22 jun..

Cetesb-Companhia Ambiental Do Estado De São Paulo. 2000. Norma Técnica L5.304: Zooplâncton de água doce- Métodos quantitativos e qualitativos de ensaioSão PauloCETESB,. Disponível em:

Cetesb-Companhia De Tecnologia De Saneamento Ambiental.2015. IET-Índice do Estado Trófico. São Paulo: [s.n.].

Cetesb-Companhia De Tecnologia De Saneamento AmbientaL. 2014. Norma técnica: Determinação de Clorofila-a e Feoftina-a método espectrofotométrico. São Paulo: [s.n.].

Chambers, P. et al., 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, v. 595, p. 9–26.

Colares, M. A. M. et al., 2013. Structure of the zooplankton communities in macrophytes stand of a Neotropical floodplain (the Paraná River, Brazil). International Review of Hydrobiology, v. 98, n. 2, p. 89–103, maio.

Elmoor-Loureiro, L. 1997. Manual de identificação de cladóceros límnicos do Brasil. Brasília: [s.n.].

Günkel, G. et al., 2013. Re-oligotrophication of tropical water reservoirs to minimize environmental impact. WIT Transactions on Ecology and the Environment, v. 172, n. VII, p. 313–326.

Jeppesen, E. et al., 2012. Biomanipulation as a Restoration Tool to Combat Eutrophication: Recent Advances and Future Challenges. Advances in Ecological Research, v. 47, p. 411–488.

Johnson, J.; Newman, R. 2011. A comparison of two methods for sampling biomass of aquatic plants. J.Aquat. Plan. Manage., v. 49, p. 1–8.

Komárek, J.; Anagnostidis, K. 1998. Cyanoprokaryota. I. Teil Chroococcales. Süsswasserflora von Mitteleuropa: Sttutgart: Gustav Fischer Verlag, 548p.

Koste, W. 1978. Rotatoria-Die Rädertiere Mitteleuropas. Stuttgart: [s.n.].

Koste, W. 1978. Rotatoria. Die Rädertiere Mitteuropas II. Berlin: [s.n.].

Lazzaro, X. et al., 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology, v. 48, n. 4, p. 649–668.

Matteucci, S.; Colma, A. 1982. Metodología para el estudio de la vegetación. Coro, Estado Falcón, Venezuela: Departamento de Asuntos Científicos y Tecnológicos de la Secretaria General de la Organización de los Estados Americanos.

Medlin, L.; Kaczmarska, I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia., v. 43, p. 245–270.

Meerhoff, M. et al., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology, v. 52, n. 6, p. 1009–1021, jun.

Oksanen, J. et al., 2008.Vegan Community Ecology Package RStudio.

Perbiche-Neves, G. et al., 2015. Identification guide to some Diaptomid species (Crustacea, Copepoda, Calanoida, Diaptomidae) of “de la Plata” River Basin (South America). ZooKeys, v. 111, n. 497, p. 1–111.

Pinto-Coelho, R. 2004. Métodos de coleta, preservação, contagem e determinação de biomassa em zooplâncton de águas epicontinentais. In: Bicudo, C.; Bicudo, D. (Eds.). . Amostragem em Limnologia. São Carlos: RiMA, p. 149–166.

R Core, T. D. R: 2019. A Language and Environment for Statistical Computing: Version 0.99.903.

Reid, J. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Copepoda (Crustacea, Copepoda). Boletim de Zoologia, v. 9, p. 17–143, 1985.

Rocha, C. M. C. et al., 2019. Aquatic macrophytes and trophic interactions: a scientometric analyses and research perspectives. Brazilian Journal of Biology, v. x, n. x, p. 1–8.

Scheffer, M. 1999a. The effect of aquatic vegetation on turbidity; how important are the filter feeders? Hydrobiologia, v. 408–409, p. 307–316.

Segers, H. 2002.The nomenclature of the Rotifera: annotated checklist of valid family- and genus-group names. Journal of Natutal History, v. 36, p. 631–640.

Selge, F. et al., 2016. Nutrient load concept-reservoir vs. bay impacts: A case study from a semi-arid watershed. Water Science and Technology, v. 74, n. 7, p. 1671–1679.

Selge, F. Aquatic ecosystem functions and oligotrophication potential of the Itaparica reservoir, São Francisco river, in the semi-arid Northeast Brazil vorgelegt. [s.l: s.n.].

Siegmund-Schultze, M. (ED). 2017. Guidance Manual – A compilation of actor-relevant content extracted from scientific results of the INNOVATE project. [s.l: s.n.].

Silva, G. M. N. DA et al., 2018. Artisanal fisheries of the Itaparica reservoir, São Francisco River, Brazil: socioeconomic profile , environmental dynamics , and management recommendations. Regional Environment Change, p. 1–11.




DOI: https://doi.org/10.26848/rbgf.v13.5.p%25p

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License