Biochar increases soil water content and total organic carbon but has no effects on soil respiration in a Regosol of Caatinga

José Romualdo de Sousa Lima, Jéssica Emanuella da Silva Oliveira, Claude Hammecker, Gustavo Pereira Duda, Érika Valente de Medeiros, Antonio Celso Dantas Antonino, Rodolfo Marcondes Silva Souza, Eduardo Soares de Souza

Resumo


Soil respiration (Rs) is the largest flux of CO2 emission from terrestrial ecosystems and an important component of global carbon balance. Small variations in Rs can promote large alterations on atmospheric CO2 concentration, it is therefore necessary to find management practices that reduce Rs and increase total organic carbon (TOC). Biochar application has been proposed as an effective measure to reach this aim. Thus, several studies measured the effect of biochar on Rs in different ecosystems; however, none was made in sandy soils of Brazilian tropical dry forest, namely Caatinga biome. We assess Rs, TOC and soil water content (SWC) from a Regosol in Caatinga in response to biochar addition. A greenhouse pot experiment, quantifying the Rs, SWC and TOC, no (B0) and with 20 t ha-1 biochar (B20) and two hydric conditions of soil (dry and wet soil) was conducted. B20 had higher TOC and SWC. There was a seasonal variation of Rs, with wet soil having higher Rs than dry soil; however biochar had no effects on Rs. This is a significant finding considering that biochar addition does not increase Rs and, hence, confirms its’ high potential to mitigate climate and land use changes in sandy soils of Caatinga biome.


Referências


Acín-Carrera, M., Marques, M.J., Carral, P., Alvarez, A.M., López, C., Martín-López, B., González J.A., 2013. Impacts of land-use intensity on soil organic carbon content, soil structure and water-holding capacity. Soil Use and Management 29, 547–556. https://doi.org/10.1111/sum.12064

Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I., 2016. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment 543, 295–306. https://doi.org/10.1016/j.scitotenv.2015.11.054

Almeida, A.V.L., Corrêa, M.M., Lima, J.R.S., Souza, E.S., Santoro, K.R., Antonino, A.C.D., 2015. Atributos físicos, macro e micromorfológicos de Neossolos Regolíticos no agreste meridional de Pernambuco. Revista Brasileira de Ciência do Solo 39, 1235-46. https://doi.org/10.1590/01000683rbcs20140757

Al‐Wabel, M.I., Hussain, Q., Usman, A.R.A., Ahmad, M., Abduljabbar, A., Sallam, A.S., Ok, Y.S., 2018. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degradation & Development 29, 2124–2161. https://doi.org/10.1002/ldr.2829

Barros, J.A., Medeiros, E.V., Costa, D.P., Duda, G.P., Lima, J.R.S., Santos, U.J., Antonino, A.C.D., Hammecker C., 2019. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Archives of Agronomy and Soil Science 65, 1-15. https://doi.org/10.1080/03650340.2019.1622095

Bhaduri, D., Saha, A., Desai, D., Meena, H.N., 2016. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148: 86-98. https://doi.org/10.1016/j.chemosphere.2015.12.130

Chen, S., Zhou, J., Hu, Z., Chen, H., Lu, Y., 2014. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and For Meteorology 198–199:335–346. https://doi.org/10.1016/j.agrformet.2014.08.020

Conant, R.T., Dalla-Betta, P., Klopatek, C.C., Klopatek, J.M., 2004. Controls on soil respiration in semiarid soils. Soil Biology and Biochemistry 36, 945–951. https://doi.org/10.1016/j.soilbio.2004.02.013

Dodor, E.D., Amanor, J.Y., Attor, T.F., Adjadeh, A.T., Neina, D., Miyittah, M., 2018. Co application of biochar and cattle manure counteract positive priming of carbon mineralization in a sandy soil. Environmental Systems Research 7, 1-09. https://doi.org/10.1186/s40068-018-0108-y

Donagemma, G.K., Freitas, P.L., Balieiro, F.C., Fontana, A., Spera, S.T., Lumbreras, J.F., Viana, J.H.M., Araújo Filho, J.C., Santos, F.C., Albuquerque, M.R., Macedo, M.C.M., Teixeira, P.C., Amaral, A.J., Bortolon E., Bortolon, L., 2016. Caracterização, potencial agrícola e perspectivas de manejo de solos leves no Brasil. Pesquisa Agropecuária Brasileira 51, 1003-1020. https://doi.org/10.1590/S0100-204X2016000900001

Duan, M., Li, A., Wu, Y., Zhao, Z., Peng, C., Deluca, T.H., Sun, S., 2019. Differences of soil CO2 flux in two contrasting subalpine ecosystems on the eastern edge of the Qinghai-Tibetan Plateau: A four-year study. Atmospheric Environment 198, 166–174. https://doi.org/10.1016/j.atmosenv.2018.10.067

Ferreira, C.R.P.C., Antonino, A.C.D., Sampaio, E.V.S.B., Correia, K.G., Lima, J.R.S., Soares, W.A., Menezes, R.S.C., 2018. Soil CO2 efflux measurements by alkali absorption and infrared gas analyzer in the Brazilian semiarid region. Revista Brasileira de Ciência do Solo 42, e0160563. https://doi.org/10.1590/18069657rbcs20160563

Ge, X., Cao, Y., Zhou, B., Wang, X., Yang, Z., Li, M-H., 2019. Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical moso bamboo plantations. Applied Soil Ecology 142, 155–165. https://doi.org/10.1016/j.apsoil.2019.04.021

Głąb, T., Palmowska, J., Zaleski, T., Gondek, K., 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281, 11–20. https://doi.org/10.1016/j.geoderma.2016.06.028

He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., Bai, S.H.N., Wallace, H., Xu, C., 2017. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. Global Change Biology: Bioenergy. 9, 743–755. https://doi.org/10.1111/gcbb.12376

IUSS, Working Group WRB. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Rome: Food and Agriculture Organization of the United Nations; 2015. (World Soil Resources Reports, 106).

Johnson, M.S., Webster, C., Jassal, R.S., Hawthorne, I., Black, T.A., 2017. Biochar influences on soil CO2 and CH4 fluxes in response to wetting and drying cycles for a forest soil. Scientific Reports 7, 6780. https://doi.org/10.1038/s41598-017-07224-6

Kavitha, B., Reddy, P.V.L., Kim, B., Lee, S.S., Pandey, S.K., Kim, K-H., 2018. Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management 227, 146–154. https://doi.org/10.1016/j.jenvman.2018.08.082

Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems - a review. Mitigation and Adaptation Strategies for Global Change 11, 395–419. https://doi.org/10.1007/s11027-005-9006-5

Li, Y., Chang, S.X., Yang, Y., Fu, S., Jiang, P., Luo, Y., Yang, M., Chen, Z., Hu, S., Zhao, M., Liang, X., Xu, Q., Zhou, G., Zhou, J., 2018. Biochar reduces soil heterotrophic respiration in a subtropical plantation through increasing soil organic carbon recalcitrancy and decreasing carbon-degrading microbial activity. Soil Biology and Biochemistry 122, 173-185. https://doi.org/10.1016/j.soilbio.2018.04.019

Lima, J.R.S., Araújo, M.B., Oliveira, C.L., Barros, C.T., Amorim, A.S., Bezerra, A.L., Dill, P.R.J., Medeiros, E.V., Hammecker, C., Antonino, A.C.D., Leite, M.C.B.S., 2020. Biochar de Lodo de Esgoto Aumenta a Produção e Eficiência no Uso de Água da Alface. Revista Brasileira de Geografia Física 13, 1720-1729. https://doi.org/10.26848/rbgf.v13.4.p1720-1729

Lima, J.R.S., Silva, W.M., Medeiros, E.V., Duda, G.P., Correa, M.M., Filho Martins, A.P., Clermont-Dauphin, C., Antonino, A.C.D., Hammecker, C., 2018. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 319, 14–23. https://doi.org/10.1016/j.geoderma.2017.12.033

Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J.I.E., Jin, Y., Zou, I., 2016b. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. Global Change Biology: Bioenergy 8, 392–406. https://doi.org/10.1111/gcbb.12265

Liu, W., Lüc, X., Xu, W., Shi, H., Hou, L., Li, L., Yuan, W., 2018. Effects of water and nitrogen addition on ecosystem respiration across three types of steppe: The role of plant and microbial biomass Science of the Total Environment 619-620, 103–111. https://doi.org/10.1016/j.scitotenv.2017.11.119

Liu, X., Zheng, J., Zhang, D., Cheng, K., Zhou, H., Zhang, A., Li, L., Joseph, S., Smith, P., Crowley, D., Kuzyakov, Y., Pan, G., 2016a. Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment 554–555:259–265. https://doi.org/10.1016/j.scitotenv.2016.02.179

Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315–323. https://www.jstor.org/stable/2389824

Lu, N., Liu, X-R., Du, Z-L., Wang, Y-D., Zhang, Q-Z., 2014. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application. Soil Research 52, 505–512. http://dx.doi.org/10.1071/SR13239

Lu, X., Li, Y., Wang, H., Singh, B.P., Hu, S., Luo, Y., Li, J., Xiao, Y., Cai, X., Li, Y., 2019. Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agricultural and Forest Meteorology 271, 168–179. https://doi.org/10.1016/j.agrformet.2019.03.001

Manns, H.R., Parkin, G.W., Martin, R.C., 2106. Evidence of a union between organic carbon and water content in soil. Canada Journal of Soil Science 96, 305–316. https://doi.org/10.1139/cjss-2015-0084

Menezes, R.S.C., Sampaio, E.V.S.B., Giongo, V., Pérez-Marin, A.M., 2012. Biogeochemical cycling in terrestrial ecosystems of the caatinga biome. Brazilian Journal of Biology 72, 643–653. http://dx.doi.org/10.1590/S1519-69842012000400004

Mukherjee, A., Lal, R., 2013. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3, 313–339. https://doi.org/10.3390/agronomy3020313

Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., Børresen, T., 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage & Research 155, 35–44. https://doi.org/10.1016/j.still.2015.08.002

Ojeda, G., Mattana, S., Àvila, A., Alcañiz, J.M., Volkmann, M., Bachmann, J., 2015. Are soil–water functions affected by biochar application? Geoderma 249-250, 1–11. https://doi.org/10.1016/j.geoderma.2015.02.014

Ouyang, W., Geng, X., Huang, W., Hao, F., Zhao, J., 2016. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area. Environmental Science and Pollution Research 23, 2279–2287. https://doi.org/10.1007/s11356-015-5306-9

Prakongkep, N., Gilkes, R.J., Wiriyakitnateekul, W., 2015. Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science 178, 732-740. https://doi.org/10.1002/jpln.201500001

Purakayastha, T.J., Das, K.C., Gaskin, J., Harris, K., Smith, J.L., Kumari, S., 2016. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils. Soil Tillage & Research 155, 107–115. https://doi.org/10.1016/j.still.2015.07.011

Purakayastha, T.J., Kumari, S., Pathak, H., 2015. Characterization, stability, and microbial effects of four biochars produced from crop residues. Geoderma 240, 293-303. https://doi.org/10.1016/j.geoderma.2014.11.009

R Development Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

Ribeiro, K., Sousa-Neto, E.R, Carvalho, J.A., Lima, J.R.S., Menezes, R.S.C., Duarte-Neto, P.J., Guerra, G.S., Ometto, J.P.H.B., 2016. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Science of the Total Environment 571, 1048-1057. https://doi.org/10.1016/j.scitotenv.2016.07.095

Sampaio, E.V.S.B., Tiessen, H., Antonino, A.C.D., Salcedo, IH., 2004. Residual N and P fertilizer effect and fertilizer recovery on intercropped and sole-cropped corn and beans in semiarid northeast Brazil. Nutrient Cycling in Agroecosystems 70, 1-11. https://doi.org/10.1023/B:FRES.0000049356.83427.93

Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, M.R., Almeida, J.A., Araújo Filho, J.C., Oliveira, J.B., Cunha, T.J.F., 2018. Sistema Brasileiro de Classificação de Solos. 5ª ed. revisada e ampliada. Brasília: Embrapa

Santos, U.J., Medeiros, E.V., Duda, G.P., Marques, M.C., Souza, E.S., Brossard, M., Hammecker, C., 2019. Land use changes the soil carbon stocks, microbial biomass and fatty acid methyl ester (FAME) in Brazilian semiarid area. Archives of Agronomy and Soil Science 65, 755-769. https://doi.org/10.1080/03650340.2018.1523544

Sheng, Y., Zhu, L., 2018. Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment 622-623, 1391–1399. https://doi.org/10.1016/j.scitotenv.2017.11.337

Silva, I.C.B., Basílio, J.J.N., Fernandes, L.A., Colen, F., Sampaio, R.A., Frazão, L.A., 2017. Biochar from different residues on soil properties and common bean production. Scientia Agricola 74, 378-382. http://dx.doi.org/10.1590/1678-992X-2016-0242

Silva, R.A.B., Lima, J.R.S., Antonino, A.C.D., Gondim, P.S.S., Souza, E.S., Barros Júnior, G., 2014. Balanço hídrico em Neossolo Regolítico cultivado com braquiária (Brachiaria decumbens Stapf). Revista Brasileira de Ciência do Solo 38, 147-157. http://dx.doi.org/10.1590/S0100-06832014000100014

Smith, J.L., Collins, H.P., Bailey, V.L., 2010. The effect of young biochar on soil respiration. Soil Biology and Biochemistry 42, 2345-2347. https://doi.org/10.1016/j.soilbio.2010.09.013

Soltani, I., Fouad, Y., Michot, D., Bréger, P., Dubois, R., Cudennec, C., 2019. A near infrared index to assess effects of soil texture and organic carbon content on soil water content. European Journal of Soil Science 70, 151-161. https://doi.org/10.1111/ejss.12725

Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management 27, 205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

Verheijen, F.G.A., Jeffery, S., Bastos, A.C., van der Velde, M., Diafas, I., 2010. Biochar application to soils: a critical scientific review on effects on soil properties, processes and functions. Luxembourg: JRC.

Wang, D., Fonte, S.J., Parikh, S.J., Six, J., Scow, K.M., 2017. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303: 110–117. https://doi.org/10.1016/j.geoderma.2017.05.027

Wang, Y., Li, X., Zhang, C., Wu, X., Dub, E., Wu, H., Yang, X., Wang, P., Bai, Y., Wu, Y., Huang, Y., 2019. Responses of soil respiration to rainfall addition in a desert ecosystem: Linking physiological activities and rainfall pattern. Science of the Total Environment 650, 3007-3016. https://doi.org/10.1016/j.scitotenv.2018.10.057

Woolf D, Lehmann J, Lee DR. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nature Communications 7, 13160. https://doi.org/10.1038/ncomms13160

Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G.D., Fornasier, F., Liu, J., Peressotti, A., 2011. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Applied Soil Ecology 50, 45-51. https://doi.org/10.1016/j.apsoil.2011.07.012

Zhang, Y., Guo, S., Liu, Q., Jiang, J., Wang, R., Li, N., 2015. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau. Ecological Engineering 74, 196–205. https://doi.org/10.1016/j.ecoleng.2014.10.003

Zheng, J., Chen, J., Pan, G., Liu, X., Zhang, X., Li, L., Bian, R., Cheng, K., Zheng, J., 2016. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment 571, 206-217. https://doi.org/10.1016/j.scitotenv.2016.07.135

Zhou, G., Zhou, X., Zhang, T., Du, Z., He, Y., Wang, X., Shao, J., Cao, Y., Xue, S., Wang, H., Xue, C., 2017. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecology and Management 405, 339–349. https://doi.org/10.1016/j.foreco.2017.09.038

Zimmerman AR. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol. 2010;44:1295–1301. https://doi.org/10.1021/es903140c




DOI: https://doi.org/10.26848/rbgf.v13.07.p%25p

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License