Perspectives and Challenges of Vehicle Electrification: An Academic Review

João Pinto Cabral Neto, Rejane Magalhães de Mendonça Pimentel, Simone Machado Santos, Maísa Mendonça Silva


Advances in technology have undoubtedly brought enormous benefits to society. On the other hand, these same advances bring new and even unknown impacts to the environment. When the theme is transportation systems, electric vehicles are the most modern and technological, being considered by the mainstream media as the most environmentally sustainable transportation model. However, little is discussed regarding the impacts and harms that are tied to this type of vehicles. In this way, this study aims at highlighting the main challenges and perspectives of the vehicular electrification technology, through a systematic review on the topic. The results obtained point out that electric cars may be responsible for the increase of eco-toxicity not only with respect to air quality, but also water and metal depletion. And, it also highlights, the existence of other technologies as alternatives to vehicle electrification.


Perspectivas e Desafios da Eletrificação Veicular: Uma Revisão Acadêmica



Os avanços da tecnologia vêm trazendo enormes benefícios para a sociedade, indubitavelmente. Por outro lado, esses avanços trazem consigo novos e até mesmo desconhecidos impactos ao meio ambiente. Quando o tema é sistemas de transportes, os veículos elétricos são o que há de mais moderno e tecnológico, sendo considerados pelas principais mídias como o modelo de transporte ambientalmente mais sustentável. No entanto, pouco se é discutido com relação aos impactos e malefícios atrelados a estes tipos de veículos. Desta forma, este estudo tem por finalidade destacar os principais desafios e perspectivas da tecnologia de eletrificação veicular, através de uma revisão sistemática sobre o tema. Os resultados apontam que os carros elétricos podem ser responsáveis pelo aumento da eco-toxicidade não apenas no que diz respeito à qualidade do ar e da água, mas também na depleção de metais. E, destaca a existência de outras tecnologias como alternativas à eletrificação veicular.

Palavras-chave: Veículos Elétricos, Desafios, Perspectivas, Impacto Ambiental.


Electric Vehicles; Challenges; Perspectives; Environmental Impact.

Texto completo:

PDF (English)


ADEPETU, A., & KESHAV, S. (2017). The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study. p. 353–373.

ALGHAZO, J., OUDA, O. K. M., & HASSAN, A. EL. (2018). E-waste environmental and information security threat: GCC countries vulnerabilities. Euro-Mediterranean Journal for Environmental Integration, v. 3, n. 1, p. 2040.

ALI, A. A. M. M. (2015). Environmental Life Cycle Assessment of a Residential Building in Egypt: A Case Study. Procedia Technology, v. 19, p. 349–356.

ANFAVEA. (2015, January 15). Estatísticas de Veículos.

ASHNANI, M. H. M. (2015). Environmental Impact of Alternative Fuels and Vehicle Technologies: A Life Cycle Assessment Perspective. Procedia Environmental Sciences, v. 30, p. 205–210.

BARAN, R. (2012). A introdução de veículos elétricos no Brasil: avaliação do impacto no consumo de gasolina e eletricidade. UFRJ: Rio de Janeiro.

BROWN, L., KIMA, D., YOMAI, A., MEYER, P., NOONAN, G., HUFF, D., & FLANDERS, W. (2005). Blood lead levels and risk factors for lead poisoning in children and caregivers in Chuuk State, Micronesia. Int J Hyg Environ Health 208:231–236.

CAO, C. (2016). Greening of the Earth and its drivers. Nature Climate Change, v. 6, n. 8, p. 791–795.

CHANG, H. (2014). Research gaps related to the environmental impacts of electronic cigarettes. Tobacco Control, v. 23, n. SUPPL. 2, p. 54–58.

CHEN, H., LI, A., & FINLOW, D. (2009). The lead and lead-acid battery industries during 2002 and 2007 in China. J Power Sources 191:22–27.

COSTA, V. B. S., SILVA, W. J. M. S., ALMEIDA, G. M. A., FERREIRA, M. H. G., OLIVEIRA, T. H., GALVÍNCIO, J. D., & PIMENTEL, R. M. M. (2015). Influence of Air Pollution in Terminalia catappa L. in Urban Areas. Revista Brasileira de Geografia Física, v. 08 n. 02, 236-252. 10.26848/rbgf.v8i2.233607.

CSPOWER. (2009, March 10). Baterias de Chumbo-Ácido São Recicláveis?.

DANIELL, W. E., VAN-TUNG, L., WALLACE, R. M., HAVENS, D. J., KARR, C. J., DIEP, N. B., CROTEAU, G.A., BEAUDET, N. J., & BAO, N. D. (2015). Childhood lead exposure from battery recycling in Vietnam. BioMed Res Int.

DJEKIC, I. (2015). Environmental Impact of Meat Industry – Current Status and Future Perspectives. Procedia Food Science, v. 5, p. 61–64.

ECYCLE. (2016). Você sabe como a combustão nos veículos gera gases poluentes?.

EGEDE, P. (2015). Life cycle assessment of electric vehicles - A framework to consider influencing factors. Procedia CIRP, v. 29, p. 233–238.

FAGAN, A., & SIRCAR, I. (2015). Europeanisation and multi-level environmental governance in a post-conflict context: the gradual development of environmental impact assessment processes in Bosnia-Herzegovina. Environment and Planning C: Government and Policy, v. 33, n. 5, p. 919–934.

GALIVEETI, H. R., GOSWAMI, A. K., & DEV CHOUDHURY, N. B. (2018). Impact of plug-in electric vehicles and distributed generation on reliability of distribution systems. Engineering Science and Technology, an International Journal, v. 21, n. 1, p. 50–59.

GIL, A. (2007, April 22). Como Elaborar um projeto de pesquisa. Editora Atlas, 4ª ed. projeto_de_pesquisa_-_antonio_carlos_gil.pdf.

GUPT, Y. (2014). Economic instruments and the efficient recycling of batteries in Delhi and the National Capital Region of India. Environment and Development Economics20:236 – 258.

GUPT, Y., & SAHAY, S. (2015). Managing used lead acid batteries in India: evaluation of EPR-DRS approaches. Journal of Health and Pollution 5(8): 52–63.

HAEFLIGER, P., MATHIEU-NOLF, M., LOCICIRO, S., NDIAYE, C., COLY, M., DIOUF, A., LAM-FAYE, A., SOW, A., TEMPOWSKI, J., PRONCZUK, J., FILIPE-JUNIOR, A., BERTOLLINI, R., & NEIRA, M. (2009). Mass lead intoxication from informal used lead-acid battery recycling in Dakar, Senegal. Environ Health Perspect 117:1535–1540.

HARRISON, G., & THIEL, C. (2017). An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe. Technological Forecasting and Social Change, v. 114, p. 165–178.

HE, K., WANG, S., & ZHANG, J. (2009). Blood lead levels of children and its trend in China. Sci Total Environ 407:3986–3993.

HEIDRICH, O. (2017). How do cities support electric vehicles and what difference does it make? Technological Forecasting and Social Change, v. 123, n. June, p. 17–23.

HOYER, K. G. (2008). The history of alternative fuels in transportation: The case of electric and hybrid cars, Utilities Policy 16: 63-71.

IMANI, M. H. (2018). Impact Evaluation of Electric Vehicle Parking on Solving Security-Constrained Unit Commitment Problem.

IPCC. (2014). AR5 Climate Change 2014: Mitigation of Climate Change. Fifth Assessment Report – Working Group III from Intergovernmental Panel on Climate Change.

ITEMM. (2016, August 17). Hibridização veicular. p. 1.

JATOBA, U. (2014). A diferença entre carros híbridos e elétricos. p. 1–4.

JI, S. (2012). Electric vehicles in China: emissions and health impacts. Environmental Science and Technology, v. 46, p. 2018-2024.

JIAO, N., & EVANS, S. (2016). Business Models for Sustainability: The Case of Second-life Electric Vehicle Batteries. Procedia CIRP, v. 40, p. 250–255.

KHAN, S. A. R., ZAMAN, K., & ZHANG, Y. (2016). The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries. Renewable and Sustainable Energy Reviews, v. 62, p. 468–477.

KIM, S., YANG, D., & RHEE, K. (2014). Recycling process of spent battery modules in used hybrid electric vehicles using physical / chemical treatments. p. 2447–2456.

LAKATOS, E. M., & MARCONI, M. A. (2003). Fundamentos de metodologia científica. São Paulo: Atlas., v. 5. ed.

LEBRET, E. (2015). Integrated environmental health impact assessment for risk governance purposes; across what do we integrate? International Journal of Environmental Research and Public Health, v. 13, n. 1, p. 1–15.

LI, T. (2018). Literature review of tire-pavement interaction noise and reduction approaches. v. 2, p. 2424–2453.

LI, Y. (2016). Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications. Applied Energy, v. 173, n. 2016, p. 535–554.

LI, Y. (2016). Infrastructure to Facilitate Usage of Electric Vehicles and its Impact. Transportation Research Procedia, v. 14, p. 2537–2543.

LIN, C. (2016). Multi-objective optimization design for a battery pack of electric vehicle with surrogate models. p. 2343–2359.

LINDGREN, J., & LUND, P. D. (2015). Identifying bottlenecks in charging infrastructure of plug-in hybrid electric vehicles through agent-based traffic simulation. n. April, p. 110–118.

MALLIG, N. (2016). Modelling the weekly electricity demand caused by electric cars. Future Generation Computer Systems, v. 64, n. Ant, p. 140–150.

MARCEL, D. (2016). Crise dos combustíveis? Primeiros veículos eram movidos a energia elétrica.

MESSAGIE, M. (2013). Environmental and financial evaluation of passenger vehicle technologies in Belgium. Sustainability (Switzerland), v. 5, n. 12, p. 5020–5033.

MORALES, G. (2010). Ei scale - an environmental impact assessment scale related to the construction materials used in the reinforced concrete. Brazilian Archives of Biology and Technology, v. 53, n. 6, p. 1511–1518.

MORIARTY, P., & WANG, S. J. (2017). Can Electric Vehicles Deliver Energy and Carbon Reductions? Energy Procedia, v. 105, p. 2983–2988.

MORO, A., LONZA, L. (2017). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, n. November 2016, p. 0–1.

MULHOLLAND, E. (2018). The cost of electrifying private transport – Evidence from an empirical consumer choice model of Ireland and Denmark. Transportation Research Part D: Transport and Environment, v. 62, p. 584–603.

NEJAD, M. M. (2017). Online scheduling and pricing for electric vehicle charging. Elsevier Ltd.

NETO, J. C., SILVA, M. M., & SANTOS, S. M. (2016). A time series model for estimating the generation of lead acid battery scrap. Clean Technologies and Environmental Policy, v. 18, n. 6, p. 1931–1943.

NOGUCHI, T., ITAI, T., MINH-TUE, N., AGUSA, T., NGOC-HA, N., HORAI, S., TRANG, P., VIET, P., TAKAHASHI, S., & TANABE, S. (2014). Exposure assessment of lead to workers and children in the battery recycling craft village, Dong Mai, Vietnam. J Mater Cycles Waste Manag 16:46–51.

PAOLIELLO, M., & DE CAPITANI, E. (2007). Occupational and environmental human lead exposure in Brazil. Environmental Research, 103:288–297.

PERUJO, A., THIEL, C., & NEMRY, F. (2011). Electric vehicles in urban context: environmental benefits and techno-economic barriers. In: SOYL, S. (Ed.). Electric vehicles: the benefits and barriers.

RAMOS, G. D. O., BURGUILLO, J. C., & BAZZAN, A. L. C. (2015). A self-adapting similarity-based coalition formation approach for plug-in electric vehicles in smart grids. v. 11, p. 167–187.

ROSATO, A. (2017). Energy, Environmental and Economic Effects of Electric Vehicle Charging on the Performance of a Residential Building-integrated Micro-trigeneration System. Energy Procedia, v. 111, n. September 2016, p. 699–709.

ROSS, C., & GUHATHAKURTA, S. (2017). Autonomous Vehicles and Energy Impacts: A Scenario Analysis. Energy Procedia, v. 143, p. 47–52.

RUIZ, V. (2018). A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renewable and Sustainable Energy Reviews, v. 81, n. May 2017, p. 1427–1452.

SANTOS, M. S., CABRAL NETO, J., SILVA, M. M. (2019). Forecasting model to assess the potential of secondary lead production from lead acid battery scrap. Environmental Science and Pollution Research.

SCHNEIDER, M., & STENGER, A. (2013). The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations. Transportation Science, v. 48, n. 4, p. 48.

SHAFIE, F. A., OMAR, D., & KARUPPANNAN, S. (2013). Environmental Health Impact Assessment and Urban Planning. Procedia - Social and Behavioral Sciences, v. 85, p. 82–91.

SHEIKHAN, M., PARDIS, R., & GHARAVIAN, D. (2013). State of charge neural computational models for high energy density batteries in electric vehicles. p. 1171–1180.

SOLTANI-SOBH, A. (2017). Analysis of the Electric Vehicles Adoption over the United States. Transportation Research Procedia, v. 22, n. 2016, p. 203–212.

SOUTO, X. M. (2020). COVID-19: general aspects and global implications. Recital - Revista de Educação, Ciência e Tecnologia de Almenara/MG. v. 2, n. 1, jan/abr.

SUSANTO, A., & MULYONO, N. B. (2018). Risk assessment method for identification of environmental aspects and impacts at ore processing industry in Indonesia. Journal of Ecological Engineering, v. 19, n. 2, p. 72–80.

TARTAKOVSKY, L., ARONOV, B., & MOSYAK, A. (2015). Modeling environmental impact of cybernetic transportation system. Environmental Engineering and Management Journal, v. 14, n. 5, p. 1161–1169.

TRIVELATO, G. C., & PAOLIELLO, M. M. (2009). Recycling of lead and human exposure in Brazil. Paper presented at the Sixth International Symposium on Recent Advances in Environmental Health Research, Jackson,Mississipi, USA.

UERJ. (2015). Baterias de lítio: novo desafio para a reciclagem. Instituto de Química da Universidade Estadual do Rio de Janeiro. Rio de Janeiro.

UNFCCC. (1992). Convenção Quadro das Nações Unidas sobre Mudanças do Clima. Conferência das Nações Unidas sobre Meio Ambiente e Desenvolvimento Sustentável.

UNITED NATIONS. (2009). Copenhagen Accord - Draft decision -/CP.15.

UNITED NATIONS. (1998). Kyoto Protocol to the United Nations Framework Convention On Climate Change.

VAN DER KUIJP, T., HUANG, L., & CHERRY, C. (2013). Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts. Environ Health 12.

VAN MIERLO, J., MESSAGIE, M., & RANGARAJU, S. (2017). Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment. Transportation Research Procedia, v. 25, p. 3439–3449.

VERZIJLBERGH, R. A., GROND, M. O. W., LUKSZO, Z., & SLOOTWEG. (2012). Network impacts and cost savings of controlled EV charging. IEEE transactions on Smart Grid, v. 3.

VIDHI, R., & SHRIVASTAVA, P. (2018). A review of electric vehicle lifecycle emissions and policy recommendations to increase EV penetration in India. Energies, v. 11, n. 3, p. 1–15.

WANG, Q. G. (2012). Environmental Impact Post-Assessment of Dam and Reservoir Projects: A Review. Procedia Environmental Sciences, v. 13, n. 2011, p. 1439–1443.

WRI BRASIL. (2018, August 02). Dados de emissões de CO2 do Brasil.

WU, K. (2012). Investigation on Li 4 Ti 5 O 12 batteries developed for hybrid electric vehicle. Journal of Environmental Planning and Management, p. 989–995.

YUAN, X. (2017). Method for evaluating the real-world driving energy consumptions of electric vehicles. Energy, v. 141, p. 1955–1968.

ZHAO, J. (2006). Whither the car? China’s automobile industry and cleaner vehicle technologies. Development and Change, v. 37, n. 1, p. 121–144.

ZHAO, S. J. (2015). The Projected Pathways and Environmental Impact of China’s Electrified Passenger Vehicles. B.A. Environmental Sciences.

ZHENG, X. (2018). Manufacturing decisions and government subsidies for electric vehicles in China: A maximal social welfare perspective. Sustainability (Switzerland), v. 10, n. 3.


Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.


Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License