Ciclone Michael: gênese e transição extratropical

Raquel Gonçalves Pereira, Aline Aquino de Araujo, Michelle Simões Reboita

Resumo


Os ciclones de escala sinótica são responsáveis por grandes mudanças no tempo das regiões onde atuam. Nos últimos anos tem aumentado o número de sistemas tropicais severos. Por exemplo, o ciclone Michael, ocorrido em outubro de 2018, causou muitos danos nos Estados Unidos (U$25 bilhões em prejuízo), inclusive 16 óbitos. Diante desse contexto, o objetivo do presente estudo é a análise sinótica da gênese e transição extratropical do ciclone Michael. Michael teve gênese no mar do Caribe, no dia 6 de outubro de 2018, associada a uma perturbação ciclônica em baixos níveis da atmosfera. O sistema chegou a categoria 5 na escala de Saffir-Simpson no dia 10 de outubro; já no dia 11 de outubro transicionou para ciclone extratropical e decaiu no dia 18 de outubro. A análise sinótica mostra que transição extratropical ocorre à medida que o sistema interage com uma região de intenso gradiente horizontal de temperatura do ar.



 

Cyclone Michael: genesis and extratropical transition

 

 

 

A B S T R A C T

 

Synoptic-scale cyclones are responsible for major changes in the weather in the regions where they act. In recent years the number of severe tropical systems has increased. For example, cyclone Michael, which occurred in October 2018, caused a lot of damage in the United States ($ 25 billion in damage) including 16 deaths. Given this context, the objective of the present study is the synoptic analysis of the genesis and extratropical transition of cyclone Michael. Michael had genesis in the Caribbean Sea on October 6, 2018, associated with a cyclonic disturbance in low levels of the atmosphere. The system reached category 5 on the Saffir-Simpson scale on 10 October; on the 11 October it transitioned to an extratropical cyclone and decayed on the 18 October. The synoptic analysis shows that extratropical transition occurs as the system interacts with a region of intense horizontal air temperature gradient.

 

Keywords: cyclone, synoptic analysis, extratropical transition.


 


Palavras-chave


Ciclone; Análise Sinótica; Transição Extratropical

Texto completo:

PDF

Referências


Anthes, R.A., 1982. Tropical Cyclones. Their Evolution, Structure and Effects, 1 ed. Amer Meteorological Society.

Beven II, J.L., Berg, R., Hagen, A., 2019. Hurricane Michael. National Hurricane Center. Disponível: https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf .Acesso: 10 abr. 2020.

Bister, M., Emanuel, K.A., 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics 65, 233-240. https://doi.org/10.1007/BF01030791.

Bjerknes, J., Solberg, H., 1922. Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophysisks Publikationer 3, 3-18. https://doi.org/10.1002/qj.49704920609

Charney, G. J., Ellassen, A., 1964. On the South of the Hurricane Depression. Journal of the atmospheric sciences 21, 68-75.

Chavas, D.R., Reed, K.A., Knaff, J.A., 2017. Physical understanding of the tropical cyclone wind-pressure relationship. Nature communications 8, 1360. https://doi.org/10.1038/s41467-017-01546-9

C3S. Copernicus Climate Change Service. ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 2020.

Disponível:https://cds.climate.copernicus.eu/. Acesso: 01 mai. 2020.

Emanuel, K.A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. Journal of Atmospheric Sciences 43, 585-604. https://doi.org/10.1175/15200469(1986)043<0585:AASITF>2.0.CO;2.

Emanuel, K.A., 2003. Tropical Cyclones. Annual Review of Earth and Planetary Sciences 31, 75-104.https://doi.org/10.1146/annurev.earth.31.100901.141259

Evans, C., Wood, K. M., Aberson, S. D., Archambault, H. M., Milrad, S. M., Bosart, L. F., Corbosiero, K. L., Davis, C. A., J. R.D., Pinto,Doyle, J., Fogarty, C., Galarneau, T. J.,Grams, C. M., Griffin, K. S., Gyakum, J., Hart, R. E., Kitabatake, N., Lentink, H. S., McTaggart-Cowan, R., Perrie, W., Quinting, J. F., Reynolds, C. A., Riemer, M., Ritchie, E. A., Sun, Y. Zhang, F., 2017. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Monthly Weather Review 145, 4317–4344. https://doi.org/10.1175/MWR-D-17-0027.1.

Frank, W.M., 1977. The structure and energetics of the tropical cyclone I. Storm structure. Monthly Weather Review 105, 1136-1150. https://doi.org/10.1175/15200493(1977)105<1136:TSAEOT>2.0.CO;2

Franklin, J.L., Black, M.L., Valde, K., 2003. GPS dropwind- sonde wind profiles in hurricanes and their operational implications. Weather and Forecasting 18, 32-44. https://doi.org/10.1175/15200434(2003)018<0032:GDWPIH>2.0.CO;2

Giammanco, I.M., Schroeder, J.L., Powell, M.D., 2012. Observed characteristics of tropical cyclone vertical wind profiles. Wind and Structures 15, 65-86. https://doi.org/10.12989/was.2012.15.1.065

Gray, W.M., 1967. Global view of the origin of tropical disturbances and storms. Colorado State University, Department of Atmospheric Science.

Gray, W.M., 1968. Global view of the origin of tropical disturbances and storms. Monthly Weather Review 96, 669-700. https://doi.org/10.1175/15200493(1968)096<0669:GVOTOO>2.0.CO;2

Hart, R.E., 2003. A cyclone phase space derived from thermal wind and thermal asymmetry. Monthly Weather Review 131, 585-616. https://doi.org/10.1175/15200493(2003)131<0585:ACPSDF>2.0.CO;2

Hart, R. E., Evans, J. L., Evans, C., 2006. Synoptic composites of the extratropical transition life cycle of North Atlantic tropical cyclones: Factors determining posttransition evolution. Monthly Weather Review 134, 553–578. https://doi.org/10.1175/MWR3082.1

He, Y.C., Chan, P.W., Li, Q.S., 2016. Observations of vertical wind profiles of tropical cyclones at coastal areas. Journal of Wind Engineering and Industrial Aerodynamics 152, 1-14. https://doi.org/10.1016/j.jweia.2016.01.009

Jones, S.C., Haar, P.A., Abraham, J., Bosart, L.F. et al., 2003. The Extratropical Transition of Tropical Cyclones: Forecast Challenges, Current Understanding, and Future Directions. Weather and Forecasting 18, 1052-1092. https://doi.org/10.1175/15200434(2003)018<1052:TETOTC>2.0.CO;2

Knapp, K. R., Ansari, S., Bain, C. L., Bourassa, M. A., Dickinson, M. J., Funk, C., Helms, C. N., Hennon, C. H., Holmes, C. D., Huffman, G. J., Kossin, J. P., Lee, H.T., Loew, A., Magnusdottir, G., 2011. Globally gridded satellite (GridSat) observations for climate studies. Bulletin of the American Meteorological Society 92, 893- 907.

Lim, Y.K., Schubert, S.D., Reale, O., Lee, M.I., Molod, A.M., Suarez, M.J., 2015. Sensitivity of tropical cyclones to parameterized convection in the NASA GEOS-5 model. Journal of Climate 28, 551-573.

NHC. National Hurricane Center, 2020. Disponível: https://www.nhc.noaa.gov. Acesso em: 20 abr. 2020.

Peixoto, P.J., Oort, A.H., 1992. Physics of climate, 1 ed. American Institute of Physics, New York.

Reboita, M.S., Gan, M.A., Rocha, R.P., Custodio, I.S., 2017a. Ciclones em Superfície nas Latitudes Austrais: Parte I. Revisão Bibliográfica. Revista Brasileira de Meteorologia 32, 171-186. https://doi.org/10.1590/0102-77863220010.

Reboita, M.S., Gan, M.A., Rocha, R.P., Custodio, I.S., 2017b. Ciclones em Superfície nas Latitudes Austrais: Parte II. Estudo de Casos. Revista Brasileira de Meteorologia 32, 509-542. https://doi.org/10.1590/0102-7786324002.

Ritchie, E.A., Esberry, R.L., 2006. Simulations of the Extratropical Transition of Tropical Cyclones: Phasing between the Upper-Level Trough and Tropical Cyclones. Monthly weather review 135, 862 – 876. https://doi.org/10.1175/MWR3303.1

Shu, Z.R., Li, Q.S., He, Y.C., Chan, P.W., 2017. Vertical wind profiles for typhoon, monsoon and thunderstorm winds. Journal of Wind Engineering and Industrial Aerodynamics 168, 190-199. https://doi.org/10.1016/j.jweia.2017.06.004

Takamura, N., Wada, A., 2020. Unusual Characteristics of Extratropical Transition of 3 Typhoons in August 2016. Journal of the Meteorological Society of Japan [online] 98. Disponível: https://www.jstage.jst.go.jp/article/jmsj/advpub/0/advpub_2020-035/_pdf. Acesso: 15 mai. 2020.

Wallace, J.M., Hobbs, P.V., 2006. Atmospheric science: an introductory survey. University of Washington.

Wang, Y., Wu, C.C., 2004. Current understanding of tropical cyclone structure and intensity changes – a review. Meteorology and Atmospheric Physics. 87, 257-278. https://doi.org/10.1007/s00703-003-0055-6.




DOI: https://doi.org/10.26848/rbgf.v14.1.p298-309

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License