A New Strategy for Consortium Sanitary Landfill Allocation Based on Multicriteria Analysis

Mayara Maezano Faita Pinheiro, Lucas Prado Osco, Tatiana Sussel Gonçalves Mendes, Rejane Ennes Cicerelli, Ana Paula Marques Ramos

Resumo


O processo de seleção de área para aterros sanitários pode ser realizado com uma Análise Multicritério de Decisão (MCDA) em um ambiente SIG. No entanto, as variáveis ambientais precisam ser modeladas adequadamente antes que qualquer MCDA seja realizada. Uma maneira de fazer isso é integrar o MCDA com a Inferência Fuzzy. Ainda assim, até onde sabemos, essa estratégia não foi avaliada na seleção de áreas para aterros do consórcio. Aqui, propomos uma nova estrutura para selecionar áreas de aterro sanitário de consórcio, integrando MCDA e lógica Fuzzy com características ambientais e socioeconômicas em ambiente GIS. Para isso, consideramos múltiplos níveis de adequação socioambiental para atender um grande e pequeno número de cidades em um período de 20 anos. Uma região do interior de São Paulo, Brasil, com 32 municípios foi selecionada como área de estudo e o método da Combinação Linear Ponderada (WLC) foi aplicado para combinar variáveis ambientais e socioeconômicas. Os pesos foram determinados utilizando o Analytical Hierarchy Process (AHP) e a lógica Fuzzy foi aplicada para modelar as variáveis. Nossa abordagem foi capaz de identificar áreas com níveis satisfatórios de adequação a aterros sanitários, atendendo a um grande e pequeno número de municípios, minimizando os impactos socioambientais. Essa abordagem é importante porque pode ajudar a direcionar as entidades governamentais para uma seleção apropriada de uma área dentro de suas fronteiras regionais. Também recomendamos o método proposto para outras regiões e locais.

 

A new strategy to define consortium sanitary landfill siting location based on multicriteria analysis

 

A B S T R A C T

The area selection process for sanitary landfills can be performed with a Multicriteria Decision Analysis (MCDA) in a GIS-environment. However, environmental variables need to be properly model before any MCDA is performed. One manner to perform this is to integrate MCDA with Fuzzy Inference. Still, to the best of our knowledge, this strategy was not evaluated in the selection of areas for consortium landfills. Here, we propose a new framework to select consortium landfill areas by integrating MCDA and Fuzzy logic with environmental and socioeconomic features in GIS environment. For this, we considered multiple levels of social-environmental suitability to attend a large and a small number of cities in a 20-years period. A region in the interior of São Paulo, Brazil, with 32 municipalities was selected as study area and the Weighted Linear Combination (WLC) method was applied to combine environmental and socioeconomic variables. Weights were determined using the Analytical Hierarchy Process (AHP) and Fuzzy logic was applied to model the variables. Our approach was able to identify areas with satisfactory suitability levels for landfills, both serving a large and a small number of municipalities while minimizing social-environmental impacts. This approach is important as it may help directs governmental entities to a appropriate selection of an area within their regional boundaries. We also recommend the proposed method for other regions and locations.

Keywords: Analytical Hierarchy Process, Environmental Impact, Fuzzy Logic, Solid Waste.


Palavras-chave


Processo de Hierarquia Analítica, Impacto Ambiental, Lógica Fuzzy, Resíduos Sólidos.

Texto completo:

PDF (English)

Referências


ABNT (Associação Brasileira de Normas Técnicas), Brazilian Association of Technical Standards. 1997. Non-hazardous waste landfills - Criteria for design, implementation and operation. NBR 13896: .1997.

Al-Anbari, M. A., Thameer, M. Y., Al-Ansari. N. 2018. Landfill Site Selection by Weighted Overlay Technique: Case Study of Al-Kufa, Iraq. Sustainability 10, 999.

Alanbari, M.A., Al-Ansari, N., Jasim, H.K., Knutsson, S. 2014. Al-Mseiab Qadaa Landfill Site Selection Using GIS and Multicriteria Decision Analysis. Engineering 6, 526-549.

ANAC (Agência Nacional de Aviação Civil), National Agency of Civil Aviation. 2018. Register of Public Aerodromes. Available in :< https://www.anac.gov.br/assuntos/setor-regulado/aerodromos>. Access in: May

, 2018.

Bahrani, S., Ebadi, T., Ehsani, H., Yousefi, H. and Maknoon, R. 2016. Modeling. Landfill Site Selection by Multi-Criteria Decision Making and Fuzzy Functions in GIS, Case Study: Shabestar, Iran. Environmental Earth Sciences 75, 337.

Bosompem, C., Stemn, E., Fei-Baffoe, B. 2016. Multi-criteria GIS-based siting of a transfer station for municipal solid waste: The case of Kumasi Metropolitan Area, Ghana. Waste Management & Research 34, 1054-1063.

Brazil. National Congress. Law No. 9,985 of July 18, 2000. Regulates art. 225, § 1, items I, II, III and VII of the Federal Constitution, establishes the National System of Nature Conservation Units and other measures. Official Diary of the Union, Brasilia, DF, July 19, 2000.

Brazil. National Congress. National Policy on Solid Waste. Law No. 12,305 of August 2, 2010. Establishes the National Policy on Solid Waste; amends Law No. 9,605 of February 12, 1998; and makes other arrangements. Official Diary of the Union, Brasilia, DF, Aug 03, 2010, p.2.

Brazil. National Congress. Law No. 12,651 of May 25, 2012. Provides for the protection of native vegetation; amending Laws 6,938 of August 31, 1981, 9,393 of December 19, 1996, and 11,428 of December 22, 2006; repeals Laws 4,771 of September 15, 1965, and 7,754 of April 14, 1989, and Provisional Measure 2,166-67 of August 24, 2001; and makes other arrangements. Official Diary of the Union, Brasilia, DF, May 28. 2012.

Brazil. National Congress. Law No. 12.725 of October 16, 2012. Provides for the control of fauna in the vicinity of aerodromes. Official Diary of the Union, Brasilia, DF, 17 Oct. 2012.

CETESB (Companhia Ambiental do Estado de São Paulo). 2016. Environmental Company of the State of São Paulo. Inventory of Urban Solid Waste. Sao Paulo: CETESB. 126.

CETESB (Companhia Ambiental do Estado de São Paulo). Environmental Company of the State of São Paulo. 2017. Quality Index of Waste Landfill - IQR. Sao Paulo: CETESB. Available in:

. Access in: May 27, 2017.

Chang, N. B., Parvathinathan, G., Breeden, J. B. 2008. Combining GIS with fuzzy multicriteria decision making for landfill siting in a fast growing urban region. Journal of environmental management 87, 139-153.

Chonattu, J., Prabhakar, K., Harikumar, P.S.P. 2016. Application of GIS and DRASTIC Modeling for Evaluation of Groundwater Vulnerability near a Solid Waste Disposal Site. International Journal of Geosciences 7, 558-571.

Colvero, D. A., Gomes, A. P. D., da Cruz Tarelho, L. A., de Matos, M. A. A., dos Santos, K. A. 2018. Use of a geographic information system to find areas for locating of municipal solid waste management facilities. Waste Management 77, 500-515.

CONAMA (Conselho Nacional do Meio Ambiente), National Council of Environment Resolution. 001 of January 23, 1986. Provides for procedures related to Environmental Impact Study. National Council of Environment CONAMA. Official Diary of the Union, Brasilia, DF, February 17 1986.

CONAMA (Conselho Nacional do Meio Ambiente), National Council of Environment Resolution. No. 428, of December 17, 2010. In the scope of environmental licensing, it provides for the authorization of the body responsible for the administration of the Conservation Unit (UC), which is dealt with in paragraph 3 of article 36 of Law No. 9,985 of 18 July 2000, as well as the science of the body responsible for the administration of the UC in the case of environmental licensing of projects not subject to EIA-RIMA and other measures. National Council of Environment-CONAMA. Official Diary of the Union, Brasilia, DF, December 20. 2010.

CPRM (Companhia de Pesquisa de Recursos Minerais), Mineral Resources Research Company. 2018. RIMAS (Rede Integrada de Monitoramento das Águas Subterrâneas). SIAGAS (Sistema de Informações de Águas Subterrâneas). Available in :< http://siagasweb.cprm.gov.br/>. Access in: April 23, 2018.

DATAGEO (Infraestrutura de Dados Espaciais Ambientais do Estado de São Paulo), São Paulo State Environmental Spatial Data Infrastructure. 2013. Unified Environmental Territorial Base. São Paulo Drainage Network. Available in: < http://datageo.ambiente.sp.gov.br/>. Access in: August 28, 2017.

DATAGEO (Infraestrutura de Dados Espaciais Ambientais do Estado de São Paulo), São Paulo State Environmental Spatial Data Infrastructure. 2017. Unified Environmental Territorial Base. Soils of State of Sao Paulo. Available in: < http://datageo.ambiente.sp.gov.br/>. Access in: August 28 2017.

De Feo, G., De Gisi, S. 2014. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal. Waste management 34, 2225-2238.

Dent, B. D., Torguson, J. S., Hodler, T. W. 2009. Cartography: Thematic map design. Boston: WCB/McGraw-Hill.

Eskandari, M., Homaee, M., Mahmodi, S. 2012. An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Management 32, 1528–1538.

Felicori, T. C., Marques, E. A. 2017. Multicriteria decision analysis applied in the selection of suitable areas for disposal of solid waste in Zona da Mata, Minas Gerais, Brazil. The Journal of Solid Waste Technology and Management 43, 47-64.

Ferronato, N., Torretta, V., Ragazzi, M., Rada, E.C. 2017. Waste mismanagement in developing countries: A case study of environmental contamination. UPB Sci. Bull. Ser. 79, 185–196. Available in :< https://www.scientificbulletin.upb.ro/rev_docs_arhiva/rez6d4_388421.pdf>. Access in: June 15, 2018.

Gbanie, S.P., Tengbe, P.B., Momoh, J.S., Medo, J., Kabba, V.T.S. 2013. Modelling landfill location using Geographic Information Systems (GIS) and Multi- Criteria Decision Analysis (MCDA): Case Study Bo, Southern Sierra Leone. Applied Geography 36, 3-12.

Goulart Coelho, L.M., Lange, L.C. 2018. Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resour. Conserv. Recycl. 128, 438–450.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2017. Map Portal. Places. Available in: . Access in: August 24, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2017. Map Portal. Geology. Available in:. Access in: August 24, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2017. Map Portal. Geomorphology. Available in: . Access in: August 24, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2017. Map Portal. Water mass. Available in: . Access in: August 24, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2017. Map Portal. Transport. Available in:

. Access in: August 24, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2017. Map Portal. Limits. Available in: . Access in: August 24, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2010. Census. Available in: < https://censo2010.ibge.gov.br/>. Access in: April 23, 2017.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 1998. Geosciences Board. Coordination of Natural Resources and Environmental Studies. Geology technical manual. Available in: < https://biblioteca.ibge.gov.br/biblioteca-catalogo?id=27919&view=detalhes>. Access in: May 28, 2018.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2007. Geosciences Board. Coordination of Natural Resources and Environmental Studies. Pedology technical manual. Available in: < https://biblioteca.ibge.gov.br/biblioteca catalogo?view=detalhes&id=295017>. Access in: May 28, 2018.

IBGE (Instituto Brasileiro de Geografia e Estatística), Brazilian Institute of Geography and Statistics. 2009. Geosciences Board. Coordination of Natural Resources and Environmental Studies. Geomorphology technical manual. Available in: < https://biblioteca.ibge.gov.br/visualizacao/livros/lv66620.pdf>. Access in: May 28, 2018.

ICMBIO (Instituto Chico Mendes de Conservação da Biodiversidade), Chico Mendes Institute for Biodiversity Conservation. 2018. Conservation Units. Available in: . Access in: September 21, 2018.

ITESP (Fundação Instituto de Terras do Estado de São Paulo), São Paulo State Land Institute Foundation. 2018. Rural Settlements.

Karim, H., Amiri, S., Huang, J., e Karimi, A. 2018. Integrating GIS and multi-criteria decision analysis for landfill site selection, case study: Javanrood County in Iran. International Journal of Environmental Science and Technology 16, 7305-7318.

Kha, M. M. U. H., Vaezi, M., Kumar, A. 2018. Optimal Siting Of Solid Waste-To-Value-Added Facilities Through A GIS-Based Assessment. Science of the Total Environment, 610, 1065-1075.

Khodaparast, M., Rajabi, A. M., Edalat, A. 2018. Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environmental Earth Sciences 77, 52.

Khoshand, A., Bafrani, A. H., Zahedipour, M., Mirbagheri, S. A., E Ehtehsami, M. 2018. Prevention of landfill pollution by multicriteria spatial decision support systems (MC-SDSS): development, implementation, and case study. Environmental Science and Pollution Research 25, 8415-8431.

Kolekar, K.A., Hazra, T., Chakrabarty, S.N. 2017. Prediction of municipal solid waste generation for

developing countries in temporal scale: A fuzzy inference system approach. Glob. Nest J 19, 511–520.

Kumar, S., Hassan, M. I. (2013). Selection of a landfill site for solid waste management: an application of AHP and spatial analyst tool. Journal of the Indian Society of Remote Sensing 41, 45–56.

Landis, J. R., Koch, G. G. 1977. The measurement of observer agreement for categorical data. Biometrics. 159-174. Available in:. Access in: July 27, 2018.

Motlagh, Z. K., Sayadi, M. H. 201). Siting MSW Landfills Using MCE Methodology in GIS Environment (Case Study: Birjand Plain, Iran). Waste Management 46, 322-337.

Nascimento, V. F., Da Silva, A. M. 2014. Identifying problems for choosing suitable areas for installation of a new landfill through GIS technology: A case study. Journal of the Air & Waste Management Association 64, 80-88.

Nascimento, V. F., Sobral, A. C., Andrade, P. R., Ometto, J. P. H. B., Yesiller, N. (2017). Modeling environmental susceptibility of municipal solid waste disposal sites: a case study in São Paulo State, Brazil. Journal of Geographic Information System 9, 8.

Obladen, N. L., Obladen, N. T. R., E Barros, K. D. 2009. Guide for the design of landfill projects for urban solid waste. CREA-PR Thematic Publications Series. 3 (4), 2009. Available in: . Access in: April 16, 2017.

Pavani, I. D., Cicerelli, R. E., De Almeida, T., Moura, L. Z., E Contreras, F. 2019. Allocation of sanitary landfill in consortium: strategy for the Brazilian municipalities in the State of Amazonas. Environmental monitoring and assessment 191, 39.

Rahmat, Z. G., Niri, M. V., Alavi, N., Goudarzi, G., Babaei, A. A., Baboli, Z., Hosseinzadeh, M. 2017. Landfill site selection using GIS and AHP: a case study: Behbahan, Iran. KSCE Journal of Civil Engineering 21, 111-118.

ReCESA (Rede De Capacitação E Extensão Tecnológica Em Saneamento) Training Network and Technological Extension in Sanitation. 2008. Solid Waste: Design, Operation and Monitoring of Landfill: Training Professionals Guide: Level 2. National Secretariat of Environmental Sanitation (org.). – Belo Horizonte: ReCESA. Available in: . Access in: June 28, 2017.

SAATY, Thomas L. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research, North-Holland 48, 9-26.

Samizava, T. M., Kaida, R. H., Imai, N. N., Nunes, J. O. R. 2008. SIG aplicado à escolha de áreas potenciais para instalação de aterros sanitários no município de Presidente Prudente SP. Revista Brasileira de Cartografia 1, 43-55.

SEADE (Fundação Sistema Estadual de Análise de Dados), State Data Analysis System Foundation. 2017. Available in: < http://www.seade.gov.br/>. Access in: August 27, 2017.

Sener, Ş., Şener, E., Nas, B., Karagüzel, R. 2010. Combining AHP with GIS for landfill site selection: A case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Management 30, 2037–2046.

Singh, A. 2019. Remote sensing and GIS applications for municipal waste management. Journal of environmental management 243, 22-29.

SNIS (Sistema Nacional de Informações sobre Saneamento), National Sanitation Information System. Diagnosis of Urban Solid Waste Management. 2016. Available in: . Access in: March 26, 2017.

Spigolon, L. M., Giannotti, M., Larocca, A. P., Russo, M. A., Souza, N. D. C. 2018. Landfill siting based on optimisation, multiple decision analysis, and geographic information system analyses. Waste Management & Research 36, 606–615.

Torabi-Kaveh, M., Babazadeh, R., Mohammadi, S. D., e Zaresefat, M. 2016. Landfill site selection using combination of GIS and fuzzy AHP, a case study: Iranshahr, Iran. Waste Management & Research 34, 438-448.

Vilhena, A. 2018. Municipal waste: integrated management manual. CEMPRE (Compromisso Empresarial para Reciclagem), Business Commitment to Recycling. 4. ed. São Paulo. 374pp.

Wang, G., Qin, L., Li, G., Chen, L. 2009. Landfill site selection using spatial information technologies and AHP: a case study in Beijing, China. Journal of environmental management 90, 2414-2421.

Yesilnacarar, M. I., Süzen, M. L., Kaya, B. Ş., & Doyuran, V. 2012. Municipal solid waste landfill site selection for the city of Sanliurfa-Turkey: An example using MCDA integrated with GIS. International Journal of Digital Earth 5, 147–164.

Yildirim, Ü., Güler, C. 2016. Identification of suitable future municipal solid waste disposal sites for the Metropolitan Mersin (SE Turkey) using AHP and GIS techniques. Environmental Earth Sciences 75, 101.

Yildirim, V., Memisoglu, T., Bediroglu, S., e Colak, H. E. 2018. Municipal solid waste landfill site selection using Multi-Criteria Decision Making and GIS: case study of Bursa province. Journal of Environmental Engineering and Landscape Management 26, 107-119.




DOI: https://doi.org/10.26848/rbgf.v14.1.p420-438

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License