CMIP3 and CMIP5 representation of sea surface temperature in the Tropical Atlantic Ocean
DOI:
https://doi.org/10.26848/rbgf.v17.1.p465-479Resumo
This study evaluates WCRP-CMIP3 and CMIP5 representation of the Sea Surface Temperature (SST) in the Atlantic Tropical Basin. The Atlantic Ocean presents thermal variability modes on intraseasonal, interannual and decadal time-scales that affect the climate of the North Atlantic, Caribbean, Western Africa, Northeast Brazil, the Gulf of Guinea Region and Southeast Atlantic (region of the Angolan resurgence). Two main SST modes in the Atlantic are the equatorial and meridional dipoles. These principal modes of SST interannual variabilities are investigated principally by empirical orthogonal function analysis (EOFs) to periods December-January and March-May. For the period of March-May, this study too analyses the relationships of these modes from coupled models of WCRP as rainfall in Northeastern Brazil compared to the observations (1971-2000 - ERSST). This investigation showed principally that although some models showed high value correlations (above 0.8 in absolute value) for both CMIP3 and CMIP5 with observations using their first two auto values EOFs coefficients of SST in the Tropical Atlantic basin, the simulations in most CMIP3-5 models do not represented the spatial thermal configuration in the basin compared to the observations, and also largely do not reproduce the pattern of correlation between to March-May between precipitation in northern of the NEB and the TSMs in the Tropical Atlantic.
Referências
Amaya, D. J., De Florio, M. J., Miller, A. J. and Xie, S. P. 2017. WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons. Clim. Dyn., 49, (5-6), 1665-1679.
Alves, J. M. B., Servain, J., Campos, J. N. 2009. Relationship between ocean climatic variability and rain-fed agriculture in northeast Brazil. Clim. Res., 38, 225–236, 2009doi: 10.3354/cr00786.
Breugem, W. P., Hazeleger, W. and Haarsma, R. J. 2006. Multimodel study of tropical Atlantic variability and change. Geophys. Resear. Lett., 33, doi: 10.1029/2006GL027831.
Chang, P., T., Yamagata, P., Schopf, S. K., Behera, J., Carton, Kessler, W. E. et al. 2006. Climate fluctuations of Tropical Coupled Systems - The Role of Ocean Dynamics. J. Climate (Special Section), 19, 5122-5174, doi :10.1175/JCLI3903.1.
Chiang, J. C. H., and Vimont, D. J. 2004. Analogous Pacific and Atlantic meridional modes of tropical atmosphere‐ocean variability, Jour. Clim., 17, 4143–4158, doi:10.1175/JCLI4953.1.
Deppenmeier, A. L., Haarsma, R. J., and Hazeleger, W. 2016. The Bjerknes feedback in the tropical Atlantic in CMIP5 models. Clim. Dyn., 47, 7-8, 2691-2707.
Dippe, T., Lübbecke, J. F., and Greatbatch, R. J. 2019. A comparison of the Atlantic and Pacific Bjerknes feedbacks: Seasonality, Symmetry, and Stationarity. J. Geophys. Resear.: Oceans. 124, 2374-2403.
Enfield, D. B., Mestas‐Nuñez, A. M., Mayer, D. A., and Cid-Serrano, L. 1999. How ubiquitous sis the dipole relationship in tropical Atlantic sea surface temperatures?, J. Geophys. Res., 104(C4), 7841–7848, doi:10.1029/ 1998JC900109.
IPCC, Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field,
C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.
Kayano, M. T., Andreoli, R. V., Garcia, S. R., and de Souza, R. A. F.. 2018. How the two nodes of the tropical Atlantic sea surface temperature dipole relate the climate of the surrounding regions during austral autumn. Int. J. Climatol., 38, 10, 3927-3941.
Keenlyside, N. S., and Latif, M. 2007. Understanding equatorial Atlantic interannual variability. J. Clim., 20, 1, 131-142.
Li, Z. X. 2001. Thermodynamicair‐seainteractionsand tropical Atlantic SST dipole pattern, Phys. Chem. Earth B, 26, 155–157.
Marengo, J.A (May, 2009). Future change of climate in South America in the late 21st century: the CREAS Project. AGU AS Newsletter. P. 5. Marengo, J.A., Ambrizzi, T., Da Rocha, R. P., Alves, L. M., Cuadra, S. V., Valverde, M. C., et al. (2009). Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim. Dyn. 35, 1073–1097. doi: 10.1007/s00382-0090721-6.
Nobre P.; Shukla, J. 1996. Variations of SST, wind stress and rainfall over the tropical Atlantic and South America. J. Clim., 9, 2464- 2479.
Prodhomme, C., Voldoire, A., Exarchou, E., Deppenmeier, A.L.., García‐Serrano, J. and Guemas, V. 2019. How does the seasonal cycle control equatorial Atlantic interannual variability?. Geophys. Resear. Lett., 46, 2, 916-922.
Richter, I., and Xie, S.-P. 2008. On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn., 31, 587-598.
Richter, I., Xie, S.-P., Behera, S., Doi, T., and Masumoto, Y. 2014. Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim, Dyn., 42, p.1-18.
Rodríguez‐Fonseca, B., Polo, I., García‐Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., and Kucharski, F. 2009. Are Atlantic Niños enhancing Pacific ENSO events in recent decades?. Geophys. Resear. Lett., 36, 20.
Ruiz-Barradas, A, Carton, J. Á. and Nigam, S. 2000. Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Clim., 13, 18, 3285-3297.
Servain, J. 1991, Simple climatic indices for the tropical Atlantic Ocean and some applications, J. Geophys. Res., 96(C8), 15,137–15,146, doi:10.1029/91JC01046.
Servain, J., and Legler, D. M. 1986, Empirical orthogonal function analysis of tropical Atlantic sea surface temperature and wind stress: 1964–1979, J. Geophys. Res., 91(C12),14,181–14,191,doi:10.1029/JC091iC12p14181.
Smith, M.T., Reynolds, R., Peterson, T., and Lawrimore, J. 2008. Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Clim., 21, 2283-2296.
Tanimoto, Y., and XIE, S–P. 2002. Inter-hemispheric decadal variations in SST, wind surface, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80, 1199-1219.
Uvo, C.B., Repelli, C.A., Zebiak, S.E., and Kushnir, Y. 1998. The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation. J. Clim., 11, 551-562.
Zebiak, S. E. 1993. Air–sea interaction in the equatorial Atlantic region. J. Clim., 6, 1567–1586.
Zhang, I., and Li, T. 2016. Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 yearsin CMIP5 models. Geophys. Resear. Lett.,43,5295– 5301, doi:10.1002/2016GL069282.
Wang, G., Dommenget, D., Frauen, C. 2015. Am evaltuation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Clim. Dyn., 44, p.95-114.
Weare, B. C. 1977. Empirical orthogonal analysis of Atlantic Ocean surface temperatures, Q. J. R. Meteorol. Soc., 103, 467–478, doi:10.1002/ qj.49710343707.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista Brasileira de Geografia Física

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam na Revista Brasileira de Geografia Física concordam com os seguintes termos:
Autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a licença Creative Commons Atribuição 4.0 Internacional (CC BY 4.0) que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (exemplo: depositar em repositório institucional ou publicar como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Autores têm permissão para disponibilizar seu trabalho online antes ou durante o processo editorial, em redes sociais acadêmicas, repositórios digitais ou servidores de preprints. Após a publicação na Revista Brasileira de Geografia Física, os autores se comprometem a atualizar as versões preprint ou pós-print do autor, nas plataformas onde foram originalmente disponibilizadas, informando o link para a versão final publicada e outras informações relevantes, com o reconhecimento da autoria e da publicação inicial nesta revista.
Qualquer usuário tem direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial.
Adaptar — remixar, transformar e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença.
De acordo com os termos seguintes:
Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso.
Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.