CMIP3 and CMIP5 representation of sea surface temperature in the Tropical Atlantic Ocean

Autores

DOI:

https://doi.org/10.26848/rbgf.v17.1.p465-479

Resumo

This study evaluates WCRP-CMIP3 and CMIP5 representation of the Sea Surface Temperature (SST) in the Atlantic Tropical Basin. The Atlantic Ocean presents thermal variability modes on intraseasonal, interannual and decadal time-scales that affect the climate of the North Atlantic, Caribbean, Western Africa, Northeast Brazil, the Gulf of Guinea Region and Southeast Atlantic (region of the Angolan resurgence). Two main SST modes in the Atlantic are the equatorial and meridional dipoles. These principal modes of SST interannual variabilities are investigated principally by empirical orthogonal function analysis (EOFs) to periods December-January and March-May. For the period of March-May, this study too analyses the relationships of these modes from coupled models of WCRP as rainfall in Northeastern Brazil compared to the observations (1971-2000 - ERSST). This investigation showed principally  that although some models showed high value correlations (above 0.8 in absolute value) for both CMIP3 and CMIP5 with observations using their first two auto values EOFs coefficients of SST in the Tropical Atlantic basin, the simulations in most CMIP3-5 models do not represented the spatial thermal configuration in the basin compared to the observations, and also largely do not reproduce the pattern of correlation between to March-May between precipitation in northern of the NEB and the TSMs in the Tropical Atlantic.

Biografia do Autor

José Maria Brabo Alves, Universidade Estadual do Ceará

Dr. Engenharia Civil (Recursos Hídricos) - Professor Adjunto M do Departamento de Física - Universidade Estadual do Ceará (UECE) - Universidade Estadual do Ceará (UECE) - Fortaleza-CE-Brasil email: jose.brabo@uece.br

Emerson Mariano Da Silva, Universidade Federal do Ceará (UECE)Departamento de Física

Dr. Engenharia Civil (Recursos Hídricos) - Professor Associado II - Departamento de Física - Universidade Estadual do Ceará (UECE) - Fortaleza-CE-Brasil email: emerson@uece.br

Francisco Das Chagas Vasconcelos Júnior, Fundação Cearense de Meteorologia e Recursos Hídricos

Dr. Meteorologia - Pesquisador da Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME) - Fortaleza - CE-Brasil email: juniorphy@gmail.com

Cleiton da Silva Silveira, UFC

Dr. Engenharia Civil (Recursos Hídricos) - Professor Adjunto Universidade Federal do Ceará (UFC) - Fortaleza - CE - Brasil email: cleitonsilveira@ufc.br

Referências

Amaya, D. J., De Florio, M. J., Miller, A. J. and Xie, S. P. 2017. WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons. Clim. Dyn., 49, (5-6), 1665-1679.

Alves, J. M. B., Servain, J., Campos, J. N. 2009. Relationship between ocean climatic variability and rain-fed agriculture in northeast Brazil. Clim. Res., 38, 225–236, 2009doi: 10.3354/cr00786.

Breugem, W. P., Hazeleger, W. and Haarsma, R. J. 2006. Multimodel study of tropical Atlantic variability and change. Geophys. Resear. Lett., 33, doi: 10.1029/2006GL027831.

Chang, P., T., Yamagata, P., Schopf, S. K., Behera, J., Carton, Kessler, W. E. et al. 2006. Climate fluctuations of Tropical Coupled Systems - The Role of Ocean Dynamics. J. Climate (Special Section), 19, 5122-5174, doi :10.1175/JCLI3903.1.

Chiang, J. C. H., and Vimont, D. J. 2004. Analogous Pacific and Atlantic meridional modes of tropical atmosphere‐ocean variability, Jour. Clim., 17, 4143–4158, doi:10.1175/JCLI4953.1.

Deppenmeier, A. L., Haarsma, R. J., and Hazeleger, W. 2016. The Bjerknes feedback in the tropical Atlantic in CMIP5 models. Clim. Dyn., 47, 7-8, 2691-2707.

Dippe, T., Lübbecke, J. F., and Greatbatch, R. J. 2019. A comparison of the Atlantic and Pacific Bjerknes feedbacks: Seasonality, Symmetry, and Stationarity. J. Geophys. Resear.: Oceans. 124, 2374-2403.

Enfield, D. B., Mestas‐Nuñez, A. M., Mayer, D. A., and Cid-Serrano, L. 1999. How ubiquitous sis the dipole relationship in tropical Atlantic sea surface temperatures?, J. Geophys. Res., 104(C4), 7841–7848, doi:10.1029/ 1998JC900109.

IPCC, Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

IPCC, 2014: Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field,

C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.

Kayano, M. T., Andreoli, R. V., Garcia, S. R., and de Souza, R. A. F.. 2018. How the two nodes of the tropical Atlantic sea surface temperature dipole relate the climate of the surrounding regions during austral autumn. Int. J. Climatol., 38, 10, 3927-3941.

Keenlyside, N. S., and Latif, M. 2007. Understanding equatorial Atlantic interannual variability. J. Clim., 20, 1, 131-142.

Li, Z. X. 2001. Thermodynamicair‐seainteractionsand tropical Atlantic SST dipole pattern, Phys. Chem. Earth B, 26, 155–157.

Marengo, J.A (May, 2009). Future change of climate in South America in the late 21st century: the CREAS Project. AGU AS Newsletter. P. 5. Marengo, J.A., Ambrizzi, T., Da Rocha, R. P., Alves, L. M., Cuadra, S. V., Valverde, M. C., et al. (2009). Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim. Dyn. 35, 1073–1097. doi: 10.1007/s00382-0090721-6.

Nobre P.; Shukla, J. 1996. Variations of SST, wind stress and rainfall over the tropical Atlantic and South America. J. Clim., 9, 2464- 2479.

Prodhomme, C., Voldoire, A., Exarchou, E., Deppenmeier, A.L.., García‐Serrano, J. and Guemas, V. 2019. How does the seasonal cycle control equatorial Atlantic interannual variability?. Geophys. Resear. Lett., 46, 2, 916-922.

Richter, I., and Xie, S.-P. 2008. On the origin of equatorial Atlantic biases in coupled general circulation models. Clim. Dyn., 31, 587-598.

Richter, I., Xie, S.-P., Behera, S., Doi, T., and Masumoto, Y. 2014. Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim, Dyn., 42, p.1-18.

Rodríguez‐Fonseca, B., Polo, I., García‐Serrano, J., Losada, T., Mohino, E., Mechoso, C. R., and Kucharski, F. 2009. Are Atlantic Niños enhancing Pacific ENSO events in recent decades?. Geophys. Resear. Lett., 36, 20.

Ruiz-Barradas, A, Carton, J. Á. and Nigam, S. 2000. Structure of interannual-to-decadal climate variability in the tropical Atlantic sector. J. Clim., 13, 18, 3285-3297.

Servain, J. 1991, Simple climatic indices for the tropical Atlantic Ocean and some applications, J. Geophys. Res., 96(C8), 15,137–15,146, doi:10.1029/91JC01046.

Servain, J., and Legler, D. M. 1986, Empirical orthogonal function analysis of tropical Atlantic sea surface temperature and wind stress: 1964–1979, J. Geophys. Res., 91(C12),14,181–14,191,doi:10.1029/JC091iC12p14181.

Smith, M.T., Reynolds, R., Peterson, T., and Lawrimore, J. 2008. Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Clim., 21, 2283-2296.

Tanimoto, Y., and XIE, S–P. 2002. Inter-hemispheric decadal variations in SST, wind surface, heat flux and cloud cover over the Atlantic Ocean. J. Meteor. Soc. Japan, 80, 1199-1219.

Uvo, C.B., Repelli, C.A., Zebiak, S.E., and Kushnir, Y. 1998. The Relationships between Tropical Pacific and Atlantic SST and Northeast Brazil Monthly Precipitation. J. Clim., 11, 551-562.

Zebiak, S. E. 1993. Air–sea interaction in the equatorial Atlantic region. J. Clim., 6, 1567–1586.

Zhang, I., and Li, T. 2016. Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 yearsin CMIP5 models. Geophys. Resear. Lett.,43,5295– 5301, doi:10.1002/2016GL069282.

Wang, G., Dommenget, D., Frauen, C. 2015. Am evaltuation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Clim. Dyn., 44, p.95-114.

Weare, B. C. 1977. Empirical orthogonal analysis of Atlantic Ocean surface temperatures, Q. J. R. Meteorol. Soc., 103, 467–478, doi:10.1002/ qj.49710343707.

Downloads

Publicado

2024-01-25

Como Citar

Alves, J. M. B., Da Silva, E. M., Júnior, F. D. C. V., & Silveira, C. da S. (2024). CMIP3 and CMIP5 representation of sea surface temperature in the Tropical Atlantic Ocean. Revista Brasileira De Geografia Física, 17(1), 465–479. https://doi.org/10.26848/rbgf.v17.1.p465-479

Edição

Seção

Climatologia e Meteorologia