Response of CO2 Fluxes to the Ocean-Atmosphere Interaction Processes in the Fernando de Noronha Island

Autores/as

  • Luis Henrique B. Alves Department of Oceanography – DOCEAN - UFPE
  • Manuel Flores Montes Department of Oceanography – DOCEAN - UFPE
  • Nathalie Lefèvre LOCEAN - França
  • Thiago Luiz do Vale Silva
  • Francis Lopes
  • Doris Veleda

Palabras clave:

Fernando de Noronha, island effect, ocean-atmosphere CO2 fluxes

Resumen

This study investigates thermodynamic conditions and air-sea CO2 fluxes in the Fernando de Noronha Island region. The analyses were based on coupled ocean-atmosphere modeling results for three periods of oceanographic cruises, Camadas Finas I, Camadas Finas II, and Camadas Finas IV, in 2010, 2012, and 2014. The ocean-atmosphere modeling results correspond well with data from three oceanographic cruises around the island. The modeled wind correlated well with the wind speed and direction values at 10m, with a statistical significance of 95%. The presence of the island modifies the sea surface temperature and surface currents. On the island's west side, ocean currents are weakened due to the physical barrier, and the sea surface temperature increases, indicating an island effect. The island effect is also observed when analyzing vertical sections. Weather conditions in 2010 show that the air temperature was higher than in 2012 and 2014. The atmosphere also exhibits an island effect, with the wind skirting the island's upper terrain and weakening on the leeward side. The oceanic part shows the warming of the upper waters and the convergence of currents on the island's west side. Modeled ocean temperatures underestimate (~ -0.3 °C) observations, except to the west of the island (~ +0.3 °C), where model temperatures are higher than measurements. Calculation of the FCO2 bias (fCO2 is the CO2 fugacity with unit atm, and FCO2 is the CO2 flux) shows that the model underestimates the measurements by about 20 mmol m-2 d-1. The ocean was a source of CO2 during the three oceanographic cruise periods.

Citas

Amante, C., & Eakins, B. (2009). ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. NOAA Technical Memorandum NES-DIS NGDC, 24. DOI: 10.7289/V5C8276

Araujo, M., Noriega, C., Medeiros, C., Lefèvre, N., Ibánhez, J. S. P., Flores Montes, M., Santos, M. d. L. (2019). On the variability in the CO2 system and water productivity in the western tropical Atlantic off North and North-east Brazil. Journal of Marine Systems, 189 (September 2018), 62–77. DOI: 10.1016/j.jmarsys.2018.09.008

Araujo M., Cintra M. (2009). Modelagem matemática da circulação oceânica na região equatorial. In Viana D. L. [et al.,] (Orgs.) O arquipélago São Pedro e São Paulo: 10 anos de Estação científica/ Brasília, DF: SECIRM. pp. 106–113.

Arístegui, J., Tett, P., Hernández-Guerra, A., Basterretxea, G., Montero, M. F., Wild, K., Barton, E. D. (1997). The influence of island-generated eddies on chlorophyll distribution: A study of mesoscale variation around Gran Canaria. Deep-Sea Research Part I: Oceanographic Research Papers, 44 (1), 71–96. DOI: 10.1016/S0967-0637(96)00093-3

Bakker, D. C. E., Nielsdóttir, M. C., Morris, P. J., Venables, H. J., & Watson, A. J. (2007). The island mass effect and biological carbon uptake for the sub- Antarctic Crozet Archipelago. Deep-Sea Research Part II: Topical Studies in Oceanography, 54 (18-20), 2174–2190. DOI: 10.1016/j.dsr2.2007.06.009

Bates, N. R., Mathis, J. T., & Jeffries, M. A. (2011). Air-sea CO2 fluxes on the Bering Sea shelf. Biogeosciences, 8 (5), 1237–1253. DOI: 10.5194/bg-8-1237 -2011

Bertini, L. and Braga, E. (2022). The Contribution of Nutrients and Water Properties to the Carbonate System in Three Particular Areas of the Tropical Atlantic (NE-BRAZIL). Journal of Geoscience and Environment Protection, 10, 135-161. DOI: 10.4236/gep.2022.102009.

Brandão, C. dos S., Malta, A., & Schiavetti, A. (2017). Temporal assessment of the management effectiveness of reef environments: The role of marine protected areas in Brazil. Ocean and Coastal Management, 142, 111–121. DOI: 10.1016/j.ocecoaman.2017.03.015

Burgers, T. M., Miller, L. A., Thomas, H., Else, B. G. T., Gosselin, M., & Papakyriakou, T. (2017). Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic. Journal of Geophysical Research: Oceans, 122 (12), 9663–9678. DOI: 10.1002/2017JC013250

Caldeira, R. M. A., & Marchesiello, P. (2002). Ocean response to wind sheltering in the Southern California Bight. Geophysical Research Letters, 29(13), 1635–1639. DOI: 10.1029/2001GL014563

Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D., & Nezlin, N. P. (2002). Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sensing of Environment, 80(2), 336–360. DOI: 10.1016/S0034-4257(01)00316-9

Caldeira, R. M., Marchesiello, P., Nezlin, N. P., DiGiacomo, P. M., & McWilliams, J. C. (2005). Island wakes in the Southern California Bight. Journal of Geophysical Research: Oceans, 110 (11), 1–20. DOI: 10.1029/2004JC002675

Caldeira, R.M.A., Tomé, R. (2013). Wake Response to an Ocean-Feedback Mechanism: Madeira Island Case Study. Boundary-Layer Meteorol 148, 419–436. DOI: 10.1007/s10546-013-9817-y

Chaves, T. B. C., Mafalda JR., P., Santos, C., de Souza, C. S., Moura, G., Sampaio, J., Feitosa, F. A. d. N. (2006). Biomassa planctônica e hidrografia na zona econômica exclusiva do Nordeste do Brasil. Tropical Oceanography, 34 (1), 12–30.

Costa da Silva A, Chaigneau A, Dossa AN, Eldin G, Araujo M and Bertrand A (2021). Surface Circulation and Vertical Structure of Upper Ocean Variability Around Fernando de Noronha Archipelago and Rocas Atoll During Spring 2015 and Fall 2017. Front. Mar. Sci. 8:598101. DOI: 10.3389/fmars.2021.598101

Currie, K. I., Macaskill, B., Reid, M. R., & Law, C. S. (2011). Processes governing the carbon chemistry during the SAGE experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 58 (6), 851–860. DOI: 10.1016/j.dsr2.2010.10.023

Dai, M., Lu, Z., Zhai, W., Chen, B., Cao, Z., Zhou, K., Chenc, C.-T. A. (2009). Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnology and Oceanography, 54 (3), 735–745. DOI: 10.4319/lo.2009.54.3.0735

Drupp, P., de Carlo, E. H., Mackenzie, F. T., Bienfang, P., & Sabine, C. L. (2011). Nutrient Inputs, Phytoplankton Response, and CO2 Variations in a Semi-Enclosed Subtropical Embayment, Kaneohe Bay, Hawaii. Aquatic Geo-chemistry, 17 (4), 473–498. DOI: 10.1007/s10498-010-9115-y

Dumousseaud, C., Achterberg, E. P., Tyrrell, T., Charalampopoulou, A., Schuster, U., Hartman, M., & Hydes, D. J. (2010). Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean. Biogeosciences, 7 (5), 1481–1492. DOI: 10.5194/bg-7-1481-2010

Ekau, W., & Knoppers, B. (1999). An introduction to the pelagic system of the North-East and East Brazilian shelf. Archive of Fishery and Marine Research, 47 (2/3), 5–24. DOI: 0944-1921/99/47/2/3-5/12.00$/0

Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Ward, B. (2017). Parameterizing air-sea gas transfer velocity with dissipation. Journal of Geophysical Research: Oceans, 122 (4), 3041– 056. DOI: 10.1002/2016JC012088

Evans, W., Hales, B., Strutton, P. G., & Ianson, D. (2012). Sea-air CO2 fluxes in the western Canadian coastal ocean. Progress in Oceanography, 101 (1), 78– 91. DOI: 10.1016/j.pocean.2012.01.003

Fransson, S., Woolf, D. K., Jeffrey, C. D., & Robinson, I. S. (2008). Calculating long-term global air-sea flux of carbon dioxide using scatterometer, passive microwave, and model reanalysis wind data. Journal of Geophysical Research: Oceans, 113 (9), 14. DOI: 10.1029/2005JC003376

Friedman, J. R., Shadwick, E. H., Friedrichs, M. A. M., Najjar, R. G., De Meo, O. A., Da, F., & Smith, J. L. (2020). Seasonal Variability of the CO2 System in a Large Coastal Plain Estuary. Journal of Geophysical Research: Oceans, 125 (1). DOI: 10.1029/2019JC015609

Garla, R. C., Chapman, D. D., Shivji, M. S., Wetherbee, B. M., & Amorim, A. F. (2006). Habitat of juvenile Caribbean reef sharks, Carcharhinus perezi, at two oceanic insular marine protected areas in the southwestern Atlantic Ocean: Fernando de Noronha Archipelago and Atol das Rocas, Brazil. Fisheries Research, 81(2–3), 236–241. DOI: 10.1016/j.fishres.2006.07.003

Garzke, J., Hansen, T., Ismar, S. M. H., & Sommer, U. (2016). Combined effects of ocean warming and acidification on copepod abundance, body size and fatty acid content. PLoS ONE, 11 (5). DOI: 10.1371/journal.pone.0155952

Gove, J. M., McManus, M. A., Neuheimer, A. B., Polovina, J. J., Drazen, J. C., Smith, C. R., et al. (2016). Near‐island biological hotspots in barren ocean basins. Nature Communications, 7(1), 10581. DOI: 10.1038/ncomms10581

Han, G., Dong, C., Li, J., Yang, J., Wang, Q., Liu, Y., & Sommeria, J. (2019). SST anomalies in the Mozambique Channel using remote sensing and numerical modeling data. Remote Sensing, 11(9). DOI: 10.3390/rs11091112

Humphreys, M. P., Daniels, C. J., Wolf-Gladrow, D. A., Tyrrell, T., & Achterberg, E. P. (2018). On the influence of marine biogeochemical processes over CO2 exchange between the atmosphere and ocean. Marine Chemistry, 199(June 2017), 1–11. DOI: 10.1016/j.marchem.2017.12.006

Ibánhez, J. S. P., Flores, M., & Lefèvre, N. (2017). Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010. Scientific Reports, 7(July 2016), 1–9. DOI: 10.1038/srep41694

Jacob, R., Larson, J., & Ong, E. (2005). M × N Communication and Parallel Interpolation in Community Climate System Model Version 3 Using the Model Coupling Toolkit. IJHPCA, 19, 293–307. DOI: 10.1177/1094342005056116

Larson, J., Jacob, R., & Ong, E. (2005). The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models. The International Journal of High-Performance Computing Applications, 19 (3), 277–292. DOI: 10.1177/1094342005056115

Lefèvre, N., Diverrés, D., & Gallois, F. (2010). Origin of CO2 undersaturation in the western tropical Atlantic. Tellus, Series B: Chemical and Physical Meteorology, 62 (5), 595–607. DOI: 10.1111/j.1600-0889.2010.00475.x

Lefèvre, N., Urbano, D. F., Gallois, F., & Diverrè, D. (2014). Impact of physical processes on the seasonal distribution of the fugacity of CO2 in the western tropical Atlantic. Journal of Geophysical Research: Oceans, 119 (2), 1383–1419. DOI: 10.1002/2013JC008979.Received

Leite, T. S., Haimovici, M., Mather, J., & Oliveira, J. E. L. (2009). Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: Information for management of an artisanal fishery inside a marine protected area. Fisheries Research, 98(1–3), 85–91. DOI: 10.1016/j.fishres.2009.04.001

Lencina-Avila, J. M., Ito, R. G., Garcia, C. A. E., & Tavano, V. M. (2016). Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 115, 175–187. DOI: 10.1016/j.dsr.2016.06.004

Li, H., Ilyina, T., Müller, W. A., & Landschützer, P. (2019). Predicting the variable ocean carbon sink. Science Advances, 5 (4). DOI: 10.1126/sciadv.aav6471

Lumpkin, R., & Garzoli, S. L. (2005). Near-surface circulation in the Tropical Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 52(3), 495–518. DOI: 10.1016/j.dsr.2004.09.001

Mohr, L.V.; Castro, J.W.A.; Costa, P.M.S., and Alves, R.J.V. (2009). Ilhas oceânicas brasileiras: da pesquisa ao manejo. Vol. II, MMA Secretaria de Biodiversidade e Floresta, Brasília, Brasil, 496p. (In Portuguese)

Padin, X. A., Vázquez-Rodrı́guez, M., Castaño, M., Velo, A., Alonso-Pérez, F., Gago, J., Perez, F. F. (2010). Air-Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn. Biogeosciences, 7 (5), 1587–606. DOI: 10.5194/bg-7-1587-2010

Pullen, J., Caldeira, R., Doyle, J. D., May, P., Tomé, R. (2017): Modeling the Air-Sea Feedback System of Madeira Island. Journal of Advances in Modeling Earth Systems, 9(3), 1641-1664

Sangrà, P., Auladell, M., Marrero-Díaz, A., Pelegrí, J. L., Fraile-Nuez, E., Rodríguez-Santana, A., Hernández-Guerra, A. (2007). On the nature of oceanic eddies shed by the Island of Gran Canaria. Deep-Sea Research Part I: Oceanographic Research Papers, 54(5), 687–709. DOI: 10.1016/j.dsr.2007.02.004

Schuster, U., Watson, A. J., Bates, N. R., Corbiere, A., Gonzalez-Davila, M., Metzl, N., . . . Santana-Casiano, M. (2009a). Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Research Part II: Topical Studies in Oceanography, 56 (8-10), 620–629. DOI: 10.1016/j.dsr2.2008.12.011

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9 (4), 347–404. DOI: 10.1016/j.ocemod.2004.08.002

Silva, B. J., Gaspar, F. L., Tyaquiçã, P., Lefèvre, N., & Flores Montes, M. J. (2019). Carbon chemistry variability around a tropical archipelago. Marine and Freshwater Research, 70 (6), 767–780.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005). A description of the advanced research WRF version 2. NCAR TECHNICAL NOTE (June), 100.

Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., & Wanninkhof, R. (2007). Constraining global air-sea gas exchange for CO 2 with recent bomb 14 C measurements. Global Biogeochemical Cycles, 21 (2), 10. DOI: 10.1029/2006GB002784

Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland, S. C. (1993). Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochem. Cycles 7, 843–878. doi: 10.1029/93gb02263

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal ofGeophysical Research, 106, 7183–7192. DOI: 10.1029/2000JD900719

Tchamabi, C. C., Araujo, M., Silva, M., & Bourlès, B. (2017). A study of the Brazilian Fernando de Noronha Island and Rocas atoll wakes in the tropical Atlantic. Ocean Modelling, 111, 9–18. DOI: 10.1016/j.ocemod.2016.12.009

Torres, R., Artioli, Y., Kitidis, V., Ciavatta, S., Ruiz-Villarreal, M., Shutler, J., … Tilstone, G. H. (2020). Sensitivity of modeled CO2 air-sea flux in a coastal environment to surface temperature gradients, surfactants, and satellite data assimilation. Remote Sensing, 12(12). DOI: 10.3390/RS12122038

Tozer, B, Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019). Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6, 1847–1864. https://doi.org/10.1029/2019EA000658

Vale Silva, T., D. Veleda, M. Araujo, and P. Tyaquiçã (2018). Ocean–Atmosphere Feedback during Extreme Rainfall Events in Eastern Northeast Brazil. J. Appl. Meteor. Climatol., 57, 1211–1229, https://doi.org/10.1175/JAMC-D-17-0232.1.

Vargas, G., Lucena-Frédou, F., Habasque, J., Lebourges-Dhaussy, A., Roudaut, G., & Bertrand, A. (2018). A new multifrequency acoustic method for the discrimination of biotic components in pelagic ecosystems: Application in a high diversity tropical ecosystem off Northeast Brazil. In 2017 IEEE/OES Acoustics in Underwater Geosciences Symposium, RIO Acoustics 2017 (Vol. 2018-January, pp. 1–8). Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/RIOAcoustics.2017.8349719

Wallcraft, A., Metzger, E., & Carroll, S. (2009). Software Design Description for the HYbrid Coordinate Ocean Model (HYCOM), Version 2.2., 149.

Ware, J. R., Smith, S. V., & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11 (3), 127–130. DOI: 10.1007/ BF00255465

Warner, J. C., Armstrong, B., He, R., & Zambon, J. B. (2010). Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Modelling, 35 (3), 230–244. DOI: 10.1016/j.ocemod.2010.07.010

Warner, J. C., Sherwood, C. R., Arango, H. G., & Signell, R. P. (2005). Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 8 (1), 81–113. DOI: 10.1016/j.ocemod.2003.12.003

Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry7, 2 (3), 203–215. DOI: 10.5194/bg-13-841-2016

Wilkin, J. L., Arango, H. G., Haidvogel, D. B., Lichtenwalner, C. S., Glenn, S. M., & Hedström, K. S. (2005). A regional ocean modeling system for the Long-term Ecosystem Observatory. Journal of Geophysical Research: Oceans, 110 (6), 1–13. DOI: 10.1029/2003JC002218

Yan, H. Q., Yu, K. F., Shi, Q., Tan, Y. H., Zhang, H. L., Zhao, M. X., . . . Wang, P. X. (2011). Coral reef ecosystems in the South China Sea as a source of atmospheric CO 2 in summer. Chinese Science Bulletin, 56 (7), 676–684. DOI: 10.1007/s11434-011-4372-8

Zhai, W.-D., Dai, M.-H., Chen, B.-S., Guo, X.-H., Li, Q., Shang, S.-L., Zhang, C.-Y., Cai, W.-J., and Wang, D.-X.: Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements, Biogeosciences, 10, 7775–7791, DOI: 10.5194/bg-10-7775-2013, 2013.

Archivos adicionales

Publicado

2023-12-28