FUNDAMENTOS DA DIAGENESSE ÓSSEA E SUAS FORMAS DE AVALIAÇÃO USANDO AS TÉCNICAS ESPECTROSCOPICAS DE FTIR-ATR E DRX

Daniela Cisneiros Silva Mutzenberg, Henry S. Lavalle Sullasi, Allysson Allan de Farias, André Luiz Campelo dos Santos, Mattheus Belo Guimarães Barbosa

Resumo


Arqueometria é uma abordagem multidisciplinar dirigida a uma grande gama de assuntos das diferentes áreas da Arqueologia, auxiliando com respostas às suas indagações. Uma área também pouco estudada ainda é a Arqueoquímica que, dentro de seus tópicos, tem o estudo dos parâmetros diagenéticos a partir de técnicas espectroscópicas. Neste trabalho, é feita uma revisão dos conjuntos de processos que envolvem as alterações físicas, químicas, histológicas e mecânicas chamadas de diagênese. Além disso, neste mesmo trabalho, foram comparadas duas técnicas de análise: a espectroscopia Fourier transform infrared by attenuated total reflectance spectroscopy (FTIR-ATR), que analisa a interação da radiação com a matéria, com o objetivo de determinar as energias das vibrações das moléculas; e a Difração de Raios X (DRX), técnica que caracteriza a estrutura cristalina dos materiais. Ambas as técnicas foram aplicadas em um fragmento de tíbia humana evidenciado no sítio Pedra do Alexandre no Rio Grande do Norte, um fêmur bovino evidenciado no sítio Pilar em Pernambuco e um fêmur humano moderno. Os parâmetros diagenéticos foram determinados com o intuito de avaliar sua aplicação comparando ambas as técnicas no estudo da diagênese óssea.

 

ABSTRACT

Archaeometry is multidisciplinary approach addressed to a wide range of topics from different archaeological areas, supporting it with answers for its quests. One area poor studied yet is archaeochemistry that within its topics has the study of diagenetic parameters by spectroscopic techniques. This work is a review of the processes that involve the physical, chemical, histological and mechanic called diagenesis. Moreover, it was also compared two techniques of spectroscopic analysis, ATR-FTIR (Fourier transform infrared by attenuated total reflectance spectroscopy) that analyzes the interaction between radiation of the matter with the aim to determine the molecule vibrations energy; and the X-ray diffraction (XRD), technique that characterize the materials crystalline structure. Both techniques were applied in a human tibia fragment evidenced in Pedra do Alexandre archaeological site, Rio Grande do Norte state; one bovine femur from Pilar archaeological site, Pernambuco state; and one modern human femur. The diagenetic parameters were determined in order to evaluate its application comparing both techniques in the bone diagenesis study.

Keywords: bones diagenesis, spectroscopy, archeology.




Palavras-chave


iagênese óssea; espectroscopia; arqueologia

Texto completo:

PDF

Referências


ABDEL-MAKSOUD, Gomaa. Comparison between the properties of ʺacceleratedagedʺ bones and archaeological bones. Mediterranean Archaeology and Archaeometry, Grécia, vol. 10, n. 1, 2010.

AMBROSE, Stanley H.; KRIGBAUM, John. Bone chemistry and bioarchaeology. Journal of Anthropological Archaeology, [S.l.], vol. 22, 2003.

ARTIOLI, Gilberto. Scientific Methods And Cultural Heritage – An introduction to the application of materials science to archaeometry and conservation science. 1. ed. Oxford: Oxford University Press, 2010.

BALME, Jane; PATERSON, Alistair. Archaeology in Practice – A Student Guide to Archaeological Analyses. 1. ed. Malden: Blackwell Publishing, 2006.

BARTSIOKAS, A. MIDDLETON A, P. Characterization and Dating of Recent and Fossil Bone by X-Ray Diffraction. Journal of Archaeological Science. Vol 19, Issue 1, 1992.

BEASLEY, Melanie M.; BARTELINK, Eric J.; TAYLOR, Lacy; MILLER, Randy M. Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. Journal of Archaeological Science, [S.l.], vol. 15, 2014.

BENETTI, Carolina. Estudo da reparação óssea por espectroscopia ATR-FTIR após remoção de fragmento da região mandibular com laser de Er,Cr:YSGG ou broca multilaminada. 91f. Tese (Doutorado) – Programa de Pós-graduação em Tecnologia Nuclear, Universidade de São Paulo, 2014.

BERNA, Francesco; MATTHEWS, Alan; WEINER, Stephen. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science, [S.l.], vol. 31, n. 7, 2004.

BRADY, Allyson L.; WHITE, Christine D.; LONGSTAFFE, Fred J.; SOUTHAM, Gordon. Investigating intra-bone isotopic variations in bioapatite using IR-laser ablation and micromilling: Implications for identifying diagenesis? Palaeogeography, Palaeoclimatology, Palaeoecology, [S.l.], vol. 266, 2008.

BROWN, Terry; BROWN, Keri. Biomolecular Archaeology - An Introduction. 1. ed. Chichester: John Wiley & Sons, 2011.

CECCANTI, B.; LANDI, A.; BARTOLI, F.; MALLEGNI, F.; MASCIANDARO, G.; CARMIGNANI, A.; MACCI, C. Study and control of the geochemical processes responsible of diagenetic alteration of archaeological bones. Atti Soc. tosc. Sci. nat., Mem., Serie A, Toscana, vol. 112, 2007.

COLLINS, M. J.; NIELSEN–MARSH, C. M.; HILLER, J.; SMITH, C. I.; ROBERTS, J. P.; PRIGODICH, R. V.; WESS, T. J.; CSAPÒ, J.; MILLARD, A. R.; TURNER–WALKER, G. The survival of organic matter in bone: a review. Archaeometry, Oxford, vol. 44, n. 3, 2002.

FARIAS, A. A. Diagênese óssea em ambiente semiárido brasileiro: modelagem e experimentações com sedimentos do sítio Pedra do Alexandre. 84f. Dissertação (Mestrado) – Programa de Pós-graduação em Arqueologia e Conservação Patrimonial, Universidade Federal de Pernambuco, 2013.

FERNANDES, R.; NADEAU, M-J.; GROOTES, P. M. EDTA based protocols for the cleaning of ancient bone bioapatite. Proceedings of the 39th International Symposium for Archaeometry, Leuven, 2012.

GARVIE-LOK, Sandra J.; VARNEY, Tamara L.; KATZENBERG, M. Anne. Preparation of bone carbonate for stable isotope analysis: the effects of treatment time and acid concentration. Journal of Archaeological Science, [S.l.], vol. 31, 2004.

GOFFER, Zvi. Archaeological Chemistry. 2. ed. Hoboken: John Wiley & Sons, Inc., 2007.

GREENE, Ethan F., TAUCH, Socheata, WEBB, Ellen, AMARASIRIWARDENA, Dulasiri. Application of diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) for the identification of potential diagenesis and crystallinity changes in teeth. Microchemical Journal, [S.l.], vol. 76, 2004.

HEDGES, R. E. M. Bone diagenesis: an overview of processes. Archaeometry, Oxford, vol. 44, n. 3, 2002.

HOLLUND, H. I.; ARIESE, F.; FERNANDES, R.; JANS, M. M. E.; KARS, H. Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry, Oxford, vol. 55, n. 3, 2013.

HOPPE, K. A.; KOCH, P. L.; FURUTANI, T. T. Assessing the Preservation of Biogenic Strontium in Fossil Bones and Tooth Enamel. International Journal of Osteoarchaeology, [S.l.] , vol. 13, 2003.

KOCH, Paul L.; TUROSS, Noreen; FOGEL, Marilyn L. The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite. Journal of Archaeological Science, [S.l.], vol. 24, 1997.

LEBON, Matthieu; MÜLLER, Katharina; BAHAIN; Jean-Jacques; FRÖHLICH, François; FALGUÈRES, Christophe; BERTRAND, Loïc; SANDT, Christophe; REICHE, Ina. Imaging fossil bone alterations at the microscale by SR-FTIR microspectroscopy. J. Anal. At. Spectrom., [S.l.], vol. 26, 2011.

LOFTUS, Emma; SEALY, Judith. Technical note: interpreting stable carbon isotopes in human tooth enamel: an examination of tissue spacings from South Africa. American Journal Of Physical Anthropology, [S.l], vol. 147, 2012.

PATE, F. Donald. Bone chemistry and palaeodiet: Bioarchaeological research at Roonka Flat, lower Murray River, South Australia 1983 - 1999. Australian Archaeology, [S.l], vol. 50, 2000.

PATE, F. Donald; HUTON, John T. The use of soil chemistry data to address postmortem diagenesis in bone mineral. Journal of Archeological Science, [S.l.], vol. 15, 1988.

PATE, F. Donald; HUTTON, John T.; NORRISH, Keith. Ionic exchange between soil solution and bone: toward a predictive model. Applied Geochemistry, Grã-Bretanha, vol. 4, 1989.

PERSON, A. BOCHERENS, H. SALIÈGE, J. PARIS, F. ZEITOUM V. Early Diagenetic Evolution of Bone Phosphate: An X-ray Diffractometry Analysis. Journal of Archaeological Science, vol 22, 1995.

PIGA, Giampaolo; THOMPSON, Tim J. U.; MALGOSA, Assumpci; ENZO, Stefano. The Potential of X-Ray Diffraction in the Analysis of Burned Remains from Forensic Contexts. Journal of Forensic Science, [S.l.], vol. 54, n. 3, 2009.

PIJOAN, C. MA.; MANSILLA, J.; LEBOREIRO, I.; LARA, V. H.; BOSCH, P. Thermal alterations in archaeological bones. Archaeometry, Oxford, vol. 49, n. 4, 2007.

PRICE, T. Douglas; BURTON, James H. An introduction to archaeological chemistry. 1. ed. Nova Iorque: Springer Science+Business Media, 2011.

PRUVOST, Mélanie; SCHWARZ, Reinhard; CORREIA, Virginia Bessa; CHAMPLOT, Sophie; BRAGUIER, Séverine; MOREL, Nicolas; FERNANDEZ JALVO, Yolanda; GRANGE, Thierry; GEIGL, Eva-Maria. Freshly excavated fossil bones are best for amplification of ancient DNA. Proceedings of the National Academy of Sciences, Washington, vol. 104, n. 3, 2007.

REICHE, I.; VIGNAUD, C.; MENU, M. The crystallinity of ancient bone and dentine: new insights by transmission electron microscopy. Archaeometry, Oxford, vol. 44, n. 3, 2002.

ROBERTS, Sam J.; SMITH, Colin I.; MILLARD, Andrew; COLLINS, Matthew J. The taphonomy of cooked bone: characterising boiling and its physico-chemical effects. Archaeometry, Oxford, vol. 44, n. 3, 2002.

ROGERS, Keith; BECKETT, Sophie; KUHN, Samira; CHAMBERLAIN, Andrew; CLEMENT, John. Contrasting the crystallinity indicators of heated and diagenetically altered bone mineral. Palaeogeography, Palaeoclimatology, Palaeoecology, [S.l.], vol. 296, 2010.

SCHOENINGER, Margaret J.; MOORE, Katherine M.; MURRAY, Matthew L.; KINGSTON, John D. Detection of bone preservation in archaeological and fossil samples. Applied Geochemistry, Grã-Bretanha, vol. 4, 1989.

SHAHACK-GROSS, Ruth; MARSHALL, Fiona; WEINER, Steve. GeoEthnoarchaeology of Pastoral Sites: The Identification of Livestock Enclosures in Abandoned Maasai Settlements. Journal of Archaeological Science, [S.l.], vol. 30, 2003.

SHAHACK-GROSS, Ruth; BERNA, Francesco; KARKANAS, Panaiotis; WEINER, Steve. Bat guano and preservation of archaeological remains in cave sites. Journal of Archaeological Science, [S.l.], vol. 31, 2004.

SMITH, Colin. Modelling Diagenesis in Archaeological Bone. 185f. Tese (Doutorado) – Programa de Pós-graduação em Combustíveis Fósseis e Geoquímica Ambiental, Universidade de Newcastle-upon-Tyne, 2002.

SMITH, C. I.; CRAIG, O. E.; PRIGODICH, R. V.; NIELSEN-MARSH, C. M.; JANS, M. M. E.; VERMEER, C.; COLLINS, M. J. Diagenesis and survival of osteocalcin in archaeological bone. Journal of Archaeological Science, [S.l.], vol. 32, 2005.

STATHOPOULOU, Elizabeth T.; PSYCHARIS, Vassilis; CHRYSSIKOS; Georgios D.; GIONIS, Vassilis; THEODOROU, George. Bone diagenesis: New data from infrared spectroscopy and X-ray diffraction. Palaeogeography, Palaeoclimatology, Palaeoecology, [S.l.], vol. 266, 2008.

STUART, Bárbara H. Analytical Techniques in Material Conservation. 1. ed. Chichester: John Wiley & Sons Ltd, 2007.

SUI, Tan; SANDHOLZER, Michael A.; BAIMPAS, Nikolaos; LANDINI, Gabriel; WALMSLEY A. Damien; LUMLEY, Philip J.; KORSUNSKY Alexander M. Ultrastructural Changes in Burnt Dental Tissue Revealed by Synchrotron X-ray Scattering. Proceedings of the International MultiConference of Engineers and Computer Scientists 2013, Hong Kong, vol. 2, 2013.

SUROVELL, Todd A.; STINER, Mary C. Standardizing Infra-red Measures of Bone Mineral Crystallinity: an Experimental Approach. Journal of Archaeological Science, [S.l.], vol. 28, 2001.

SZOSTEK, Krzysztof. Chemical signals and reconstruction of life strategies from ancient human bones and teeth – problems and perspectives. Anthropological Review, [S.l.], vol. 72, 2009.

SZOSTEK, Krzysztof; STEPAŃCZAK, Beata; SZCZEPANEK, Anita; KĘPA, Małgorzata; GŁĄB, Henryk; JAROSZ, Paweł; WŁODARCZAK, Piotr; TUNIA, Krzysztof; PAWLYTA, Jacek; PALUSZKIEWICZ, Czesława; TYLKO, Grzegorz. Diagenetic signals from ancient human remains – bioarchaeological applications. MINERALOGIA, Polônia, vol. 42, n. 2-3, 2011.

THOMPSON, T. J. U.; GAUTHIER, Marie; ISLAM, Meez. The application of a new method of Fourier Transform Infrared Spectroscopy to the analysis of burned bone. Journal of Archaeological Science, [S.l.]. vol. 36, 2009.

WALKER, Mike. Quaternary Dating Methods. 1. ed. Chichester: John Wiley & Sons Ltd, 2005.

WEINER, Stephen. Microarchaeology: beyond the visible archaeological record. 1. ed. Cambridge: Cambridge Press, 2010.

WESS, T. J.; DRAKOPOULOS, M.; SNIGIREV, A.; WOUTERS, J.; PARIS, O.; FRATZL, P.; COLLINS, M.; HILLER, J.; NIELSEN, K. The use of small-angle x-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry, Oxford, vol. 43, n. 1, 2001.

ZAZZO, Antoine; SALIÈGE, Jean-François; LEBON, Matthieu; LEPETZ, Sébastien; MOREAU, Christophe. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon, Tucson, vol. 54, n. 3–4, 2012.




DOI: https://doi.org/10.20891/clio.v30i2p154-188

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

ISSN: 2448-2331

© 1984-2020 CLIO Arqueológica 
Universidade Federal de Pernambuco - UFPE
Programa de Pós-Graduação em Arqueologia
Centro de Filosofia e Ciências Humanas, 10º andar
Avenida da Arquitetura, S/N - Cidade Universitária
CEP 50.740-550 Recife (PE), Brasil

 

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License

 

UFPE LOCKSS Open Access

 

Instituições de referência para a CLIO Arqueológica:

Capes ABEC Fumdham INAPAS LatinRev