Spatial and temporal distribution of soil moisture using remote sensing techniques

Jhon Lennon Bezerra da Silva, Francisco Dirceu Duarte Arraes, José Diorgenes Alves Oliveira, Geber Barbosa de Albuquerque Moura, Alan Cezar Bezerra

Abstract


The determination of soil moisture distribution is complex and timely, making it unable to describe the behavior of its spatial and temporal distribution on a regional scale. The objective of this study was to estimate and evaluate the spatial and temporal variability of soil moisture by means of the instantaneous evaporative fraction in the semi-arid region using remote sensing data. Three images of the Landsat 5 sensor satellite TM were used on September 21, 2008, June 20, 2009 and August 29, 2011, covering the area of study: Iguatu, Brazilian semiarid. These images were processed from the ERDAS imagine 9.1 software, where the radiometric calibration and the conversion to radiance and reflectance were performed through complementary surface data using the SEBAL algorithm. The thematic maps of the energy balance biophysical parameters: instantaneous evaporative fraction (FE) and the degree of soil moisture saturation (θ / θsat) were processed by ArcGis® 10.2.2 software. The descriptive statistics was used to determine the differences of FE and θ / θsat in relation to the anthropological actions and the local climate of the region. Therefore, the monitoring of these biophysical parameters, especially the degree of soil moisture saturation, showed to be an effective part of the energy balance, configuring before them the power to make decisions regarding environmental aspects. The estimation of the spatial pattern of the degree of soil moisture saturation presented consistent values for the different uses and occupations of the soil, showing a great relation with the values of the evaporative fraction in all the images studied.

Keywords


Energy balance, evaporative fraction, land use.

References


Allen, R.G., Tasumi, M., Trezza, R., Waters, R., Bastiaanssen, W., 2002. SEBAL (Surface Energy Balance Algorithms for Land). Advance Training and Users Manual – Idaho Implementation, version 1.0. Idaho: University of Idaho.

Arraes, F.D.D., Andrade, E.M., Silva, B.B., 2012. Dinâmica do balanço de energia sobre o açude Orós e suas adjacências. Revista Caatinga 25, 119-127.

Arraes, F.D.D., Lopes, F.B., Souza, F.D., Oliveira, J.D., 2009. Estimativa do balanço hídrico para as condições climáticas Iguatu, Ceará, usando modelo estocástico. Revista Brasileira de Agricultura Irrigada 3, 78-87.

Bastiaanssen, W.G.M., 1995. Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies Mediterranean climates. Ph. D. Thesis, Wageningen Agricultural University.

Bastiaanssen, W.G.M., Molden, D.J., Makin, I.W., 2000. Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management 46, 137-155.

Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J.F., Roerink, G.J., Van der Wal, T., 1998. A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. Journal of hydrology 212, 213-229.

Bezerra, B.G., Santos, C.A.C., Silva, B.B., Perez-Marin, A.M., Bezerra, M.V.C., Bezerra, J.R.C., Rao, T.V.R., 2013. Estimation of soil moisture in the root-zone from remote sensing data. Revista Brasileira de Ciência do Solo 37, 596-603.

FUNCEME. Fundação Cearense de Meteorologia e Recursos Hídricos, 2015. Mapeamento dos espelhos d’água do Brasil. Fortaleza – CE.

IPECE. Instituto de Pesquisa e Estratégia Econômica do Ceará, 2015. Perfil básico municipal de 2015. Iguatu – CE.

Lopes, H.L., Accioly, L.J.O, Silva, F.H.B.B, Sobral, M.C.M, Araújo Filho, J.C., Candeias, A.L.B., 2011. Espacialização da umidade do solo por meio da temperatura da superfície e índice de vegetação. Revista Brasileira de Engenharia Agrícola e Ambiental 15, 973-980.

Nicácio, R.M., 2008. Evapotranspiração real e umidade do solo usando dados de sensores orbitais e a metodologia SEBAL na bacia do rio São Francisco. Tese (Doutorado) – Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Scott, C.A., Bastiaanssen, W.G., Ahmad, M.U.D., 2003. Mapping root zone soil moisture using remotely sensed optical imagery. Journal of Irrigation and Drainage Engineering 129, 326-335.

Silva, J.L.B., 2016. Monitoramento espaço-temporal da cobertura vegetal do bioma Caatinga no Ceará mediante imagens orbitais. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal Rural de Pernambuco – UFRPE, Recife – PE.

Younis, S.M.Z., Iqbal, J., 2015. Estimation of soil moisture using multispectral and FTIR techniques. The Egyptian Journal of Remote Sensing and Space Science 18, 151-161.




DOI: http://dx.doi.org/10.5935/jhrs.v7i3.23106

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Hyperspectral Remote Sensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.