Quantification Caatinga vegetable coverage and water availability by remote sensing in the Brazilian semiarid

Jhon Lennon Bezerra Silva, Alan Cézar Bezerra, Tecla Ticiane Félix Silva, Pedro Henrique Dias Batista, Geber Barbosa de Albuquerque Moura, Pabrício Marcos Oliveira Lopes

Abstract


Brazilian semiarid region is susceptible to drought events, and water scarcity is a frequent problem. Irregularities in rainfall regimes lead to conflicts over water use in these regions, as there is high demand for human consumption and agriculture. Monitoring of the water and natural resources of the semiarid region is essential. Remote sensing, in turn, is effective because it presents high applicability in the heterogeneous mapping of heterogeneous areas in a practical and low cost, both spatially and temporally. Objective was to monitor and quantify the Caatinga vegetation coverage and the water condition by remote sensing through the vegetation index of the normalized water difference. The research was developed in a region of the Brazilian semiarid, municipality of Serra Talhada, Pernambuco, in the period 2015 to 2019. The study was conducted from Landsat satellite images. Thematic maps of the terrestrial surface of the region were developed through the images processing, with application of the Surface Energy Balance Algorithms for Land (SEBAL), performing a spatial-temporal modeling to determine the vegetation index of the standardized modified water difference. The quantification and characterization of Caatinga vegetation and water bodies will be used to compare environmental monitoring studies in the semiarid region and to evaluate environmental impacts. The spatial-temporal monitoring of the vegetation index of the normalized difference of the modified water showed patterns of responses and changes of the Caatinga vegetation coverage, as well as the water availability of the region. Drought favored water scarcity, directly affecting the multiple uses of the semiarid region.

Keywords


water resources, drought events, SEBAL

Full Text:

PDF

References


Allen, R., Tasumi, M., Trezza, R., Waters, R., Bastiaanssen, W., 2002. SEBAL: Surface Energy Balance Algorithms for Land, Idaho implementation. Idaho: Waters Consulting: University of Idaho: Water Watch, Inc. 97 p. (Advanced Training and Users Manual, version 1.0).

Alvares, C.A., Stape, J.L., Sentelhas, P.C., MORAES, G., Leonardo, J., Sparovek, G., 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-728.

ANA., 2019. Agência Nacional de Águas. Portal HidroWeb: Acervo de dados hidrológicos. Séries Históricas de Estações (1986-2017). Available in: . Acess: June 10, 2019.

Anjos, D.M., Soares, D.D.M.A., Simões, E.M., Leite, A.C.C.P., Ramos, T.M., Bakke, I.A., 2017. Temporal analysis of water volume at Capoeira Reservoir Mãe d’Água, Paraíba, Brazil. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12, 138-142.

Aquino, C.M.S., Oliveira, J.G.B., 2012. Estudo da dinâmica do índice de vegetação por diferença normalizada (NDVI) no núcleo de São Raimundo Nonato-PI. GEOUSP: Espaço e Tempo (Online), 31, 157-168.

Araujo, J.C., Güntner, A., Bronstert, A., 2006. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrological Sciences Journal, 51, 157-170.

Arraes, F.D.D., Andrade, E.M., Silva, B.B., 2012. Dinâmica do balanço de energia sobre o açude Orós e suas adjacências. Revista Caatinga, 25, 119-127.

Barbosa, H.A., Lakshmi Kumar, T., Paredes, F., Elliott, S., Ayuga, J.G., 2018. Assessment of Caatinga response to drought using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008-2016). ISPRS Journal of Photogrammetry and Remote Sensing, 148, 235-252.

Bastiaanssen, W.G.M., 2000. SEBAL – Based Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin, Turkey. Journal of Hydrology, 229, 87-100.

Bastiaanssen, W.G.M., Pelgrum, H., Wang, J., MA, Y., Moreno, J.F., Roerink, G.J., Van Der Wal, T., 1998a. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212-213, 198-212.

Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A., Holtslag, A.A.M., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) 2. Validation. Journal of Hydrology, 212-213, 213-229.

Beltrão, B.A., Mascarenhas, J.C., Miranda, J.L.F., Souza Junior, L.C., Galvão, M.J.T.G., Pereira, S.N., 2005. Projeto cadastro de fontes de abastecimento por água subterrânea. Diagnóstico do município de Serra Talhada, Estado de Pernambuco. CPRM/ PRODEEM, Recife. 12 p.

Bezerra, J.M., Moura, G.B.A., Silva, B.B., Lopes, P.M.O., Silva, E.F.F., 2014. Parâmetros biofísicos obtidos por sensoriamento remoto em região semiárida do estado do Rio Grande do Norte, Brasil1. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 73-84.

Brito, P.V.S., Morais, Y.C.B., Ferreira, H.S., Silva, J.F., Galvíncio, J.D., 2017. Análise comparativa da umidade da vegetação de áreas de Caatinga preservada, agricultura irrigada e sequeiro. Journal of Environmental Analysis and Progress, 2, 493-498.

Chander, G., Markham, B.L.; Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893-903.

D’Odorico, P., Bhattachan, A., Davis, K.F., Ravi, S., Runyan, C.W., 2013. Global desertification: drivers and feedbacks. Advances in Water Resources, 51, 326-344.

Giongo, P.R., Vettorazzi, C.A., 2014. Albedo da superfície por meio de imagens TM-Landsat 5 e modelo numérico do terreno. Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 833-838.

Gutiérrez, A.P.A., Engle, N.L., De Nys, E., Molejón, C., Martins, E.S., 2014. Drought preparedness in Brazil. Weather and Climate Extremes, 3, 95-106.

IBGE., 2018. Instituto Brasileiro de Geografia e Estatística. População estimada: IBGE, Diretoria de Pesquisas, Coordenação de População e Indicadores Sociais, Estimativas da população residente com data de referência a julho de 2018. Available in: . Acess: June 10, 2019.

IBGE., 2019. Instituto Brasileiro de Geografia e Estatística. Área da unidade territorial: Área territorial brasileira. Available in: . Acess: June 10, 2019. Rio de Janeiro: IBGE, 2019.

Iqbal, M., 1983. An introduction to solar radiation. London: Academic Press., 390 p.

Köppen, W., 1936. Das geographische System der Klimate. Köppen, W.R. Geiger (Eds.): Handbuch der Klimatologie. Gebrüder Bornträger, 1, 1-44, part C.

Lins, F.A.C., Araújo, D.C.S., Silva, J.L.B., LOPES, P.M.O., Oliveira, J.D.A., Silva, A.T.C.S.G., 2017. Estimativa de parâmetros biofísicos e evapotranspiração real no semiárido Pernambucano utilizando sensoriamento remoto. Irriga, 1, 64-75.

MAPBIOMAS., 2019. Projeto de Mapeamento Anual da Cobertura e Uso do Solo no Brasil. Classificação temática do Bioma Caatinga. Available in: . Acess: October 13, 2019.

Marengo, J.A., Alves, L.M., Alvala, R., Cunha, A.P., Brito, S., Moraes, O.L., 2018. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências, 90, 1973-1985.

Marengo, J.A., Torres, R.R., Alves, L.M., 2016. Drought in Northeast Brazil-past, present, and future. Theoretical and Applied Climatology, 129, 1189-1200.

Mariano, D.A., Santos, C.A., Wardlow, B.D., Anderson, M.C., Schiltmeyer, A.V., Tadesse, T., Svoboda, M.D., 2018. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sensing of Environment, 213, 129-143.

McFeeters, S.K., 1996. The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425-1432.

Medeiros, L.C., Guedes, J.C.F., Oliveira, A.M., Costa, D.F.S., 2016. Uso de SIG na análise dos recursos hídricos no município de Caicó (RN). Geoambiente On-line, 27, 134-149.

Moreira, E.P., Valeriano, M.M., 2014. Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification. International Journal of Applied Earth Observations and Geoinformation, 32, 208-217.

Oliveira, J.D.A., Medeiros, B.C., Silva, J.L.B., Moura, G.B.A., Lins, F.A.C., Nascimento, C.R., Lopes, P.M.O., 2017. Space-temporal evaluation of biophysical parameters in the High Ipanema watershed by remote sensing. Journal of Hyperspectral Remote Sensing, 7, 357-366.

Ribeiro, E.P., Nóbrega, R.S., Mota Filho, F.O., Moreira, E.B., 2016. Estimativa dos índices de vegetação na detecção de mudanças ambientais na bacia hidrográfica do rio Pajeú. Geosul, 31, 59-92.

Rodrigues, J.D., Andrade, E.D., Teixeira, A.D.S., Silva, B.D., 2009. Sazonalidade de variáveis biofísicas em regiões semiáridas pelo emprego do sensoriamento remoto. Engenharia Agrícola, 29, 452-465.

Silva, B.B.D., Braga, A.C., Braga, C.C., Oliveira, L.M., Montenegro, S.M., Barbosa Junior, B., 2016. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 3-8.

Silva, D.A.O., Lopes, P.M.O., Moura, G.B.A., França e Silva, E.F., Silva, J.L.B., Bezerra, A.C., 2019. Evolução Espaço-Temporal do Risco de Degradação da Cobertura Vegetal de Petrolina-PE. Revista Brasileira de Meteorologia, 34, 1-11.

Silva, L.G., Galvíncio, J.D., 2012. Análise comparativa da variação nos índices NDVI e SAVI no Sítio PELD – 22, em Petrolina – PE, na primeira década do século XXI. Revista Brasileira de Geografia Física, 5, 1446-1456.

Vorovencii, I., 2015. Assessing and monitoring the risk of desertification in Dobrogea, Romania, using Landsat data and decision tree classifier. Environmental monitoring and assessment, 187-204.

Xu, D., Kang, X., Qiu, D., Zhuang, D., Pan, J., 2009. Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China. Sensors, 9, 1738-1753.

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27, 3025-3033.

Zhang, K., Kimball, J.S., Running, S.W., 2016. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3, 834-853.




DOI: https://doi.org/10.29150/jhrs.v9.4.p166-176

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:

 

Google Scholar

 

Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202