Application of PRISMA satellite hyperspectral imagery to mineral alteration mapping at Cuprite, Nevada, USA

Enton Bedini, Jiang Chen

Abstract


The PRISMA hyperspectral imaging satellite of the Italian Space Agency was launched into orbit on March 22, 2019. The PRISMA is a pushbroom sensor that records 250 hyperspectral bands in the 0.4-2.5 μm wavelength region at a spatial resolution of 30 m. The swath of the hyperspectral imagery is 30 km. This study evaluates the application of the PRISMA hyperspectral imagery to mineral exploration. The study area is the Cuprite in Nevada, USA. Cuprite has served as test-site for a number of airborne and spaceborne remote sensing imaging systems. The Cuprite PRISMA hyperspectral data were analyzed with the Advanced Coherence Estimator algorithm. The analysis of the hyperspectral imagery accurately mapped the spatial distribution of alunite, kaolinite, hydrated silica, muscovite and buddingtonite. The study shows that the PRISMA hyperspectral imagery is a useful tool for mineral exploration projects in arid and semi-arid environments.  


Keywords


hyperspectral, satellite, mineral exploration, PRISMA, reflectance spectroscopy

Full Text:

PDF

References


Albers, J.P., and Stewart, J.H., 1972. Geology and mineral deposits of Esmeralda County, Nevada: Nevada Bureau of Mines and Geology Bulletin 78, 80 p.

Ashley, R.P. and Abrams, M.J., 1980. Alteration mapping using multispectral images, Cuprite mining district, Esmeralda County, Nevada: U.S. Geological Survey Open File Report 80-367, 17 p.

Bedini, E., 2017. The use of hyperspectral remote sensing for mineral exploration: A review. Journal of Hyperspectral Remote Sensing, 7(4), 189-211.

Bedini, E., van der Meer, F., van Ruitenbeek, F., 2009. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. International Journal of Remote Sensing 30, 327–348.

Bishop, J.L. and Murad, E., 2005. The visible and infrared spectral properties of jarosite and alunite. American Mineralogist 90, 1100–1107.

Boardman, J.W. and Kruse, F.A., 2011. Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Trans. Geosci. Remote Sens. 49, 4138–4152.

Boardman, J.W., Kruse F.A., Green R.O., 1995. Mapping target signatures via partial unmixing of AVIRIS data, in Summaries, Fifth JPL Airborne Earth Science Workshop, Jet Propulsion Laboratory Publ. 95-1, 1, 23-26.

Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., Sutley, S.J., 2007. USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data Series 231, http://speclab.cr.usgs.gov/spectral.lib06.

Clark R.N., Swayze G.A., Livo, K.E, Kokaly, R.F, Sutley, S.J, Dalton, J.B, McDougal, R.R, Gent, C.A., 2003. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal Geophysical Research-Planets 108, 44.

Clark, R.N., 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy, in: Rencz, A.N. (ed.), Remote Sensing for the Earth Sciences, v. 3. John Wiley, New York, pp. 3–58.

Goetz, A.F.H. and Srivastava V., 1985. Mineralogical mapping in the Cuprite mining district, Nevada. Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop. JPL Publication, Pasadena.

Green, A.A., Berman, M., Switzer, B., Craig, M.D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. Geosci. Remote Sensing, 26, 65-74.

Hallam, M., and Eugster, H.P., 1976. Ammonium silicate stability relations. Contributions to Mineral Petrology 57, 227–244.

Hunt, G.R. and Ashley, R.P., 1979. Spectra of altered rocks in the visible and near infrared. Economic Geology 74, 1613–1629.

Kruse, F.A., Perry, S.L., Caballero, A., 2006. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Annals of Geophysics 49, 83–92.

Kruse, F.A, Boardman, J.W., Huntington, J.F., 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing 41, 1388–1400.

Kruse, F.A., Kierein-Young, K.S., Boardman, J.W., 1990. Mineral mapping at Cuprite, Nevada with a 63 channel imaging spectrometer. Photogrammetric Engineering and Remote Sensing 56, 83–92.

Labate, D., Ceccherini, M., Cisbani, A., De Cosmo, V., Galeazzi, C., Giunti, L., Melozzi, M., Pieraccini, S., Stagi, M., 2009. The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission. Acta Astronautica, 65, 1429-1436.

Loizzo, R., Daraio, M., Guarini, R., Longo, F., Lorusso, R., Dini, L., Lopinto, E., 2019. Prisma Mission Status and Perspective. In IGARSS 2019, IEEE International Geoscience and Remote Sensing Symposium, pp. 4503-4506. IEEE.

Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C., Varacalli, G., 2018. PRISMA: The Italian hyperspectral mission. In IGARSS 2018, IEEE International Geoscience and Remote Sensing Symposium, pp. 175-178. IEEE.

Lopinto, E. and Ananasso, C., 2013. The Prisma hyperspectral mission. In Proceedings of the 33rd EARSeL Symposium, 12 p.

Manolakis, D., Lockwood, R., Cooley, T., 2016. Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms. Cambridge University Press, p. 706 p..

Pignatti, S., Palombo, A., Pascucci, S., Romano, F., Santini, F., Simoniello, T., Umberto, A., Vincenzo, C., Acito, N., Diani, M., Matteoli, S., 2013. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring. In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, pp. 4558-4561, IEEE.

Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer/Geological Survey of Western Australia, Dordrecht.

Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews 14, 157–183.

Schott, J.R., 2007. Remote Sensing. The Image Chain Approach, 2nd edition. Oxford University Press, New York, p. 688 p.

Swayze, G.A., Clark, R.N., Goetz, A.F.H., Livo, K.E., Breit, G.N., Kruse, F.A., Sutley, S.J., Snee, L.W., Lowers, H.A., Post, J.L., 2014. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Economic Geology 109, 1179-1221.

van der Meer, F.D., van der Werff, H.M., van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., Van Der Meijde, M., Carranza, E.J.M., De Smeth, J.B., Woldai, T., 2012. Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14, 112-128.

Vincent, R.K., 1997. Fundamentals of Geological and Environmental Remote Sensing. Prentice Hall, New York.




DOI: https://doi.org/10.29150/jhrs.v10.2.p87-94

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:

 

Google Scholar

 

Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202