The use of hyperspectral remote sensing for mineral exploration: a review

Enton Bedini

Abstract


The hyperspectral remote sensing technology has been available to the research community for more than three decades. Since in its first steps the hyperspectral technology was also promoted as a tool for mineral exploration. Numerous mineral exploration applications of hyperspectral remote sensing have been reported. This paper provides an up-to-date and focused review of the applications of the hyperspectral remote sensing to mineral exploration. The ore deposits are grouped based on major processes of formation (magmatic, hydrothermal, sedimentary, supergene). The review shows that the hyperspectral remote sensing technology has found application to the study and exploration of a number of ore deposits including kimberlites (host-rocks of diamonds), carbonatites (host-rock of rare earth elements deposits), porphyry deposits, epithermal gold and silver deposits, skarn deposits, volcanic-hosted massive sulfide (VHMS) deposits, orogenic gold deposits, Carlin-type gold deposits, SEDEX Pb-Zn-Ag deposits. On the other hand, the possibilities of the hyperspectral technology remain still underexplored for the study and exploration of chromite deposits, Ni-sulfide deposits in mafic and ultramafic rocks, rare-metal pegmatites, greisen and related deposits, Mississippi Valley-type (MVT) Pb-Zn deposits, Kupferschiefer deposits and uranium deposits in sedimentary basins, iron ores in banded-iron formations, laterites and bauxites. A special attention has been paid in this review to the applications in mineral exploration of the emerging airborne hyperspectral thermal infrared technology. In addition, the possibilities and limitations of spaceborne hyperspectral imagery of moderate spatial resolution for detailed characterization and detection of mineralized systems are discussed for each major deposit type. The spatial resolution of the hyperspectral data is noted to be a key factor on the success of a hyperspectral exploration project. By providing a full up-to-date picture of the applications and contribution of the hyperspectral imagery to the exploration and characterization of ore deposits this review paper should be useful to the interested geological remote sensing researcher and practitioner, and to the mineral exploration manager as well.


Keywords


hyperspectral remote sensing; airborne imagery; spaceborne imagery; mineral exploration; ore deposits

Full Text:

PDF (English)

References


Arne D, House E, Pontual S, Huntington J. 2016. Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia. Australian Journal of Earth Sciences 63: 1003–1025.

Asadzadeh S, de Souza CR. 2016. A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation: 47, 69–90.

Baldridge AM, Hook SJ, Grove CI, Rivera G. 2009. The ASTER spectral library version 2.0. Remote Sensing of Environment 113: 711–715.

Bedell R. 2004. Remote sensing in mineral exploration. Society of Economic Geologists, SEG Newsletter 58: p.1, 8–14.

Bedini E, Rasmussen TM. 2017. Use of airborne hyperspectral imagery and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland. Geoscience Journal (submitted).

Bedini E. 2012. Mapping alteration minerals at Malmbjerg molybdenum deposit, East Greenland, by Kohonen self-organizing maps and matched filter analysis of hyperspectral imagery. International Journal of Remote Sensing 33: 939–961.

Bedini E. 2011. Mineral mapping in the Kap Simpson complex, central East Greenland using HyMap and ASTER remote sensing data. Advances in Space Research 47: 60–73.

Bedini E. 2009. Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sensing of Environment 113: 1208–1219.

Bedini E, van der Meer F, van Ruitenbeek F. 2009. Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. International Journal of Remote Sensing 30: 327–348.

Berger BR, King TVV, Morath LC, Phillips JD. 2003. Utility of high-altitude infrared spectral data in mineral exploration: application to northern Patagonia Mountains, Arizona. Economic Geology 98: 1003–1018.

Best MC. 1982. Igneous and Metamorphic Petrology. Freeman, San Francisco. 630 p.

Bierwirth P, Huston D, Blewett R. 2002. Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia. Economic Geology 97: 819–826.

Boesche N, Rogass C, Lubitz C, Brell M, Herrmann S, Mielke C, Tonn S, Appelt O, Altenberger U, Kaufmann H. 2015. Hyperspectral REE (rare earth element) mapping of outcrops-applications for neodymium detection. Remote Sensing 7: 5160–5186.

Calvin WM, Pace EL. 2016. Utilizing HyspIRI prototype data for geological exploration applications: a southern California case study. Geosciences 6: 11.

Calvin WM, Littlefield EF, Kratt C. 2015. Remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics 53: 517–526.

Clark RN, Swayze GA, Wise R, Livo E, Hoefen T, Kokaly R, Sutley SJ. 2007. USGS digital spectral library splib06a. U.S. Geological Survey, Digital Data Series 231.

Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA. 2003. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal Geophysical Research-Planets 108: Art. No. 5131. 44 p.

Clark RN. 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Remote Sensing for the Earth Sciences (ed. Rencz, A. N.), John Wiley, New York, vol. 3, pp. 3–58.

Clénet H, Ceuleneer G, Pinet P, Abily B, Daydou Y, Harris E, Dantas, C. 2010. Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: petrogenesis and relationship to mantle diapirism. Lithos 114: 265–281.

Cline JS, Hofstra AH, Muntean JL, Tosdal RM, Hickey KA. 2005. Carlin-type gold deposits in Nevada: Critical geological characteristics and viable models. Economic Geology 100: 451–484.

Cloutis EA, Sunshine JM, Morris RV. 2004. Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics and Planetary Science 39: 545–565.

Cloutis EA. 1996. Hyperspectral geological remote sensing: Evaluation of analytical techniques. International Journal of Remote Sensing: 17, 2215-2242.

Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL, Ruff SW, Stefanov WL. 2000. A thermal emission spectral library of rock-forming minerals. J. Geophys. Res. (Planets) E4 105: 9735–9739.

Cocks T, Jensen R, Stewart WI, Shields T. 1998. The HyMap airborne hyperspectral sensor: the system, calibration and performance. In Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, 6-8 October 1998, Zurich, edited by M. Schaepman, D. Schläpfer and K.I. Itten, 37–43. EARSeL, Paris.

Corriveau L, Ootes L, Mumin H, Jackson V, Bennett V, Cremer JF, Rivard B, McMartin I, Beaudoin G. 2007. Alteration vectoring to IOCG(U) deposits in frontier volcano-plutonic terrains, Canada. In: "Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration" edited by B. Milkereit, 2007, p. 1171–1177.

Coulter DW, Hauff PL, Sares MA, Bird DA, Peters DC, Henderson FB. 2009. Hyperspectral remote sensing of a mineralized system in the Grizzly Peak caldera, Colorado: implications for exploration and acid drainage baselines. Reviews in Economic Geology 16: 123–134.

Crosta AP, Sabine C, Taranik JV. 1998. Hydrothermal alteration mapping at Bodie, California, using AVIRIS hyperspectral data. Remote Sensing of Environment 65: 309–319.

Cudahy TJ. 2016. Mineral mapping for exploration: an Australian journey of evolving spectral sensing technologies and industry collaboration. Geosciences 6: 52.

Cudahy TJ, Okada K, Yamato Y, Huntington JF, Hackwell JA. 2000a. Mapping skarn alteration mineralogy at Yerington, Nevada, using airborne hyperspectral TIR SEBASS imaging data. In Proceedings of the 14th International Conference on Applied Geologic Remote Sensing, Las Vegas, NV, USA, 6–8 November 2000; pp. 70–79.

Cudahy TJ, Okada K, Brauhart C. 2000b. Targeting VMS-style Zn mineralisation at Panorama, Australia, using airborne hyperspectral VNIR-SWIR HYMAP™ data. In Proceedings of the 14th International Conference on Applied Geologic Remote Sensing, Las Vegas, NV, USA, 6–8 November 2000; pp. 395–402.

Cudahy TJ, Okada K, Whitbourn LB. 1999. Mapping garnet Fe-Mn solid solution chemistry associated with Broken Hill style Pb-Zn-Ag mineralisation using airborne hyperspectral 9-11 m reflectance. Proceedings of the 13th ERIM International Conference on Applied Geologic Remote Sensing, Vancouver, 1-3 March, pages I-64 to I-72.

de Carvalho OA, de Souza Martins E, de Mello Baptista GM, de Carvalho AF, da Silva Madeira Netto J, Meneses PR. 1999. Mineralogical Differentiation in Weathering Profiles of Lateritic Ni Using AVIRIS Data in Niquelandia - GO, Brazil. In: Proceedings of the Ninth Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop. JPL Publication, 9 p.

dos Reis Salles R, de Souza Filho CR, Cudahy T, Vicente LE, Monteiro LVS. 2017. Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit, NW, Queensland, Australia. (in press). Journal of Geochemical Exploration. 15 p.

Duke EF. 1994. Near-infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress—implications for remote-sensing. Geology 22: 621–624.

Duuring P, Hagemann SG, Novikova Y, Cudahy T, Laukamp C. 2012. Targeting iron ore in banded iron formations using ASTER data: Weld Range Greenstone Belt, Yilgarn Craton, Western Australia. Economic Geology 107: 585-597.

Eisman MT. 2012. Hyperspectral remote sensing. SPIE Press. Bellingham, Washington, USA. 743 p.

Evans AM. 1993. Ore geology and industrial minerals. Blackwell Publishing. Third Edition. 389 p.

Franklin JM. 1993. Volcanic-associated massive sulfide deposits. In: Kirkham, R.V., ed., Mineral Deposit Modeling: Geological Association of Canada Special Paper 40: 403–417.

Goetz AFH, Srivastava V. 1985. Mineralogical mapping in the Cuprite mining district, Nevada. Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop (pp. 22−31). Pasadena, CA: JPL Publication 85—41, Jet Propulsion Laboratory.

Goetz AFH, Vane G, Solomon J, Rock BN. 1985. Imaging spectrometry for Earth remote sensing. Science 228: 1147−1153.

Goetz AFH. 2009. Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sensing of Environment 113: S5–S16.

Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M. 1998. Imaging spectroscopy and the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment 65: 227−248.

Guha A, Ravi S, Ananth Rao D, Vinod Kumar K, Dhananjaya Rao EN. 2013. Issues and limitations of broad band remote Sensing of kimberlite—a case example from kimberlites of Dharwar Craton, India. International Journal of Geosciences 4: 371–379.

Hauff PL. 2009. Alteration mineralogy of Alberta kimberlites: PIMA infrared spectroscopic analysis. Alberta Geological Survey Special Report 12. 79 p.

Hellman MJ, Ramsey MS. 2004. Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing. Journal of Volcanology and Geothermal Research 135: 195–219.

Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulphide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology 96: 939–955.

Hunt GR. 1982. Spectroscopic properties of rocks and minerals. In Handbook of Physical Properties of Rocks (ed. Carmichael, R. S.), CRC Press, pp. 295–385.

Jakob S, Gloaguen R, Laukamp C. 2016. Remote Sensing-Based Exploration of Structurally-Related Mineralizations around Mount Isa, Queensland, Australia. Remote Sensing 8: 358.

John DA, du Bray EA, Henry CD, Vikre PG. 2015. Cenozoic Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California.

Jones S, Herrmann W, Gemmell B. 2005. Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in the Mira Falls volcanic-hosted massive sulphide camp, Vancouver Island, British Columbia, Canada. Economic Geology 100: 273–294.

Keeling JL, Mauger AJ, Raven MD. 2004. Airborne hyperspectral survey and kimberlite detection in the Terowie district, South Australia. In Regolith (ed. Roach, I. C.), CRC LEME, pp. 166–170.

Kokaly RF, Johnson MR. 2011. Chapter 21B. Analysis of Imaging Spectrometer Data for the Khanneshin Area of Interest. 24 p. In: Peters, S.G., King, T.V.V., Mack, T.J., and Chornack, M.P., eds., and the U.S. Geological Survey Afghanistan Mineral Assessment Team, 2011, Summaries of important areas for mineral investment and production opportunities of nonfuel minerals in Afghanistan: U.S. Geological Survey Open-File Report 2011–1204, 1,810 p.

Kratt C, Calvin WM, Coolbaugh MF. 2010. Mineral mapping in the Pyramid Lake basin: hydrothermal alteration, chemical precipitates and geothermal energy potential. Remote Sensing of Environment 114: 2297–2304.

Kruse FA. 2015. Integrated visible and near infrared, shortwave infrared, and longwave infrared (VNIR-SWIR-LWIR), full-range hyperspectral data analysis for geologic mapping, J. Appl. Rem. Sens. 9: 20 p.

Kruse FA, 2012, Mapping Surface Mineralogy Using Imaging Spectrometry, Geomorphology 137: 41-56.

Kruse FA, Taranik JV, Coolbaugh M, Michaels J, Littlefield EF, Calvin WM, Martini BA. 2011. Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry – Examples Using HyspIRI-Simulated Data. Remote Sensing 3: 1584-1602.

Kruse FA, Perry SL, Caballero A. 2006. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Annals of Geophysics 49: 83–92.

Kruse FA, Boardman JW, Huntington JF. 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing 41: 1388–1400.

Kruse FA, Boardman JW. 2000. Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing. IEEE Trans. Geosci. Remote Sensing 3: 299–304.

Kruse FA. 1999. Mapping hot spring deposits with AVIRIS at Steamboat Springs, Nevada. In: R.O. Green (Ed.), 8th Annual JPL Airborne Earth Science Workshop, Jet Propulsion Laboratory (1999), pp. 239–245

Kruse FA, Hauff PL. 1991. Identification of illite polytype zoning in disseminated gold deposits using reflectance spectroscopy and X-ray diffraction – potential for mapping with imaging spectrometers. IEEE Transactions on Geoscience and Remote Sensing 29: 101–104.

Kruse FA, Kierein-Young KS, Boardman JW. 1990. Mineral mapping at Cuprite, Nevada with a 63 channel imaging spectrometer. Photogramm. Eng. Remote Sensing 56: 83–92.

Kruse FA. 1988. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine Mountains, Nevada and California. Remote Sensing Environ. 24: 31–51.

Kuosmanen V, Arkimaa H, Tiainen M, Bärs R. 2015. Hyperspectral close-range LWIR imaging spectrometry – 3 case studies. Geophysical signatures of mineral deposit types in Finland Edited by Meri-Liisa Airo, Geological Survey of Finland, Special Paper 58: 117–144.

Kusuma KN, Ramakrishnan D, Pandalai HS. 2012. Spectral pathways for effective delineation of high-grade bauxites: a case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data. Int. J. Remote Sensing 33: 7273–7290.

Laakso K, Rivard B, Peter JM. 2015. Hyperspectral reflectance spectrometry in the exploration for VMS deposits using the Izok Lake Zn-Cu-Pb-Ag deposit, Nunavut as a test site, In: Targeted Geoscience Initiative 4: Contributions to the Understanding of Volcanogenic Massive Sulphide Deposit Genesis and Exploration Methods Development, (ed.) J.M. Peter and P. Mercier-Langevin; Geological Survey of Canada, Open File 7853, p. 15–25.

Laukamp C, Cudahy T, Thomas M, Jones M, Cleverley JS, Oliver NHS. 2011. Hydrothermal mineral alteration patterns in the Mount Isa Inlier revealed by airborne hyperspectral data. Australian Journal of Earth Sciences 58: 917–936.

Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, Middleton EM. 2015. An introduction to the NASA Hyperspectral Infrared Imager (HyspIRI) mission and preparatory activities. Remote Sensing of Environment 167: 6–19.

Le Maitre RW, (Ed.). 2002. Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed. 236 pp. Cambridge, New York, Melbourne: Cambridge University Press.

Livo EK, Johnson MR. 2011. Analysis of Imaging Spectrometer Data for the Aynak-Logar Valley Area of Interest. Chapter 2B. 40 p. In: Peters, S.G., King, T.V.V., Mack, T.J., and Chornack, M.P., eds., and the U.S. Geological Survey Afghanistan Mineral Assessment Team, 2011, Summaries of important areas for mineral investment and production opportunities of nonfuel minerals in Afghanistan: U.S. Geological Survey Open-File Report 2011–1204, 1,810 p.

Lowell JD, Guilbert JM. 1970. Lateral and vertical alteration–mineralization zoning in porphyry ore deposits. Economic Geology 65: 373–408.

Mars JC, Rowan LC. 2006. Regional mapping of phyllic-and argillic altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2: 161–186.

Mars JC, Rowan LC. 2011. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 7: 276–289.

Mateer M. 2010. Ammonium Illite at the Jerritt Canyon District and Gold strike Property, Nevada: its spatial distribution and significance in the exploration of Carlin-type deposits. Unpublished PhD thesis dissertation. University of Wyoming, 2010.

Mitchell RH. 1986. Kimberlites: mineralogy, geochemistry, and petrology. New York, London: Plenum Press. 442 p.

Momose A, Miyatake S, Arvelyna Y, Nguno A, Mhopjeni K, Sibeso M, Muyongo A, Muvangua E. 2011. Mapping pegmatite using HyMap data in southern Namibia. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, pp. 2216–2217.

Nagal S. 2013. Spectral analysis of Hyperion data for mapping the spatial variation of bauxite mineral in a part of Katni District, Madhya Pradesh, India. International Journal of Scientific & Engineering Research 4: 23–28.

Neave, D.A., Black, M., Riley, T.R., Gibson, S.A., Ferrier, G., Wall, F., Broom-Fendley, S., 2016. On the Feasibility of Imaging Carbonatite-Hosted Rare Earth Element Deposits Using Remote Sensing. Economic Geology 111: 641–665.

Ngcofe L, Minaar H, Halenyane K, Chevallier L. 2013. Multispectral and hyperspectral remote sensing: target area generation for porphyry copper exploration in the Namaqua Metamorphic province, South Africa. South African Journal of Geology 116.2: 259-272

Oshigami S, Yamaguchi Y, Uezato T, Momose A, Arvelyna Y, Kawakami Y, Miyatake S, Nguno A. 2013. Mineralogical mapping of southern Namibia by application of continuum-removal MSAM method to the HyMap data. International Journal of Remote Sensing 34: 5282-5295.

Peter JM, Layton-Matthews D, Gadd MG, Gill S, Baker S, Plett S, Paradis S. 2015. Application of visible-near infrared and short wave infrared spectroscopy to sediment-hosted zinc-lead deposit exploration in the Selwyn Basin, Yukon, in Paradis, S., ed., Targeted Geoscience Initiative 4: sediment-hosted Zn-Pb deposits: processes and implications for exploration; Geological Survey of Canada, Open File 7838, p. 152-172.

Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Dordrecht; London: Springer/Geological Survey of Western Australia, 1250 p.

Pollard PJ, Taylor RG, Cuff C. 1988. Genetic modeling of greisen-style tin systems. In: Hutchison CS. (Ed.), The Geology of Tin Deposits in Asia and the Pacific, 59-72. Springer-Verlag, Berlin.

Pour AB, Hashim M, Pournamdari M. 2015. Chromitite prospecting using Landsat and Aster remote sensing data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-2/W2, 2015 Joint International Geoinformation Conference, 28–30 October, Kuala Lumpur, Malaysia.

Pour AB, Hashim M. 2014. Alteration mineral mapping using ETM+ and Hyperion remote sensing data at Bau Gold Field, Sarawak, Malaysia. 8th International Symposium of the Digital Earth (ISDE8). IOP Conf. Series: Earth and Environmental Science 18, pp 1-5.

Pour AB, Hashim M. 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews 44: 1-9.

Ridley J. 2013. Ore deposit geology. 398 p. Cambridge University Press.

Riley D, Hecker CA. 2013. Mineral mapping with airborne hyperspectral thermal infrared remote sensing at Cuprite, Nevada, USA. In: Thermal infrared remote sensing: sensors, methods, applications, C. Kuenzer and S. Dech, (eds.), Volume 17 of the series Remote Sensing and Digital Image Processing, pp. 495-514. Springer.

Riley D, Cudahy T, Hewson R, Jansing D, Hackwell J. 2007. SEBASS imaging for Copper Porphyry and Skarn Deposits, Yerington, NV. In "Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration" edited by B. Milkereit, p. 1151-1157.

Rivard B, Zhang J, Feng J, Sanchez-Azofeifa GA. 2009. Remote predictive lithologic mapping in the Abitibi Greenstone Belt, Canada, using airborne hyperspectral imagery. Canadian Journal of Remote Sensing 35: S95–S105.

Rockwell BW, Hofstra AH. 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—implications for geologic mapping and mineral resource investigations in well-studied and frontier areas. Geosphere 4: 218–246.

Rogge D, Rivard B, Segl K, Grant B, Feng J. 2014. Mapping of Ni-Cu-PGE ore hosting ultramafic rocks using airborne and simulated EnMap hyperspectral imagery, Nunavik, Canada. Remote Sensing of Environment 152: 302-317.

Rowan LC, Kingston MJ, Crowley JK. 1986. Spectral reflectance of carbonatites and related alkalic igneous rocks; selected samples from four North American localities. Economic Geology 81: 857–871.

Rowan LC, Bowers TL, Crowley JK, Anton-Pacheco C, Gumiel P, Kingston MJ. 1995. Analysis of airborne visible-infrared imaging spectrometer (AVIRIS) data of the Iron Hill, Colorado, carbonatite-alkali igneous complex. Economic Geology 90: 1966–1982.

Rowan LC, Clark RN, Green RO. 1996. Mapping minerals in the Mountain Pass, California area using Airborne Visible – Infrared Imaging Spectrometer (AVIRIS) data. Proceedings of the 11th Conference on Geologic Remote Sensing, vol. 1 (pp. I177 –I178). Ann Arbor, Michigan: Environmental Institute of Michigan (ERIM).

Rowan LC, Mars JC. 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data: Remote Sensing of Environment 84: 350–366.

Sabins FF. 1999. Remote sensing for mineral exploration. Ore Geology Reviews 14: 157–183.

Sabins FF. 1997. Remote Sensing — Principles and Interpretation, 3rd edn., W.H. Freeman, New York, NY. 494 pp.

Salisbury JW, Walter LS, Vergo N, D’Aria DM. 1991. Infrared (2.1–2.5 µm) Spectra of Minerals, Johns Hopkins University Press, Baltimore, pp. 1–267.

Shau GA, Burke HK. 2003. Spectral imaging for remote sensing. Lincoln Laboratory Journal 14: 3-28.

Spatz DM. 1996. Remote sensing strategies in mineral exploration and development: the precious metal and porphyry deposit models. International Archives of Photogrammetry and Remote Sensing, vol. XXXI, Part B7, pp. 638–649. Vienna 1996.

Suryanarayana Rao KV, Kumar C, Kumar A, Nandish V, Swamy RT. 2013. Lamproites from the eastern margin of the Bhandara craton, Orissa, India: An Exploration Case Study. In D.G. Pearson et al. (eds.) Proceedings of the 10th International Kimberlite Conference, vol. 2, Special Issue of the Journal of the Geological Society of India: 129–141.

Swayze GA, Clark RN, Goetz AFH, Livo KE, Breit GN, Kruse FA, Sutley SJ, Snee LW, Lowers HA, Post JL, et al. 2014. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Economic Geology 109: 1179-1221.

Tangestani MH, Moore F. 2002. Porphyry copper alteration mapping at the Meiduk area, Iran. International Journal of Remote Sensing 23: 4815–4825.

Tappert MC, Rivard B, Fulop A, Rogge D, Feng J, Tappert R, Stalder R. 2015. Characterizing kimberlite dilution by crustal rocks at the Snap Lake diamond mine (Northwest Territories, Canada) using SWIR (1.90–2.36 μm) and LWIR (8.1–11.1 μm) hyperspectral imagery collected from drill core. Economic Geology 110: 1375-1387.

Tappert MC, Rivard B, Giles D, Tappert R, Mauger A. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews 53: 26–38.

Taranik JV, Aslett ZL. 2009. Development of hyperspectral imaging for mineral exploration. Reviews in Economic Geology 16: 83–95.

Taylor GR, Hansford P, Stevens BPJ, Robson D. 2005. HyMap™ of Broken Hill—imaging spectrometry for rock and mineral abundance mapping. Exploration Geophysics 36: 397–400.

Thompson AJB, Hauff PL, Robitaille JA. 1999. Alteration mapping in exploration; application of short-wave infrared SWIR spectroscopy. SEG Newsletter 39: pp. 1, 16–27.

Thompson AJB, Thompson JFH. 1996. Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada, Mineral Deposits Division. 119 p.

Tukiainen T, Thomassen B. 2010. Application of airborne hyperspectral data to mineral exploration in North-East Greenland. Geological Survey of Denmark and Greenland Bulletin 20: 71–74.

Tukiainen T, Krebs JD, Kuosmanen V, Laitinen J, Schäffer U. 2003. Field and laboratory reflectance spectra of kimberlitic rocks, 0.35–2.5 μm, West Greenland. Geological Survey of Denmark and Greenland, Report 2003/43, 25 p.

Tukiainen T, Thorning L. 2005. Detection of kimberlitic rocks in West Greenland using airborne hyperspectral data: the HyperGreen 2002 project. Geological Survey of Denmark and Greenland Bulletin 7: 69-72.

Ungar SG, Pearlman JS, Mendenhall JA, Reuter D. 2003. Overview of the Earth Observing One (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing 41: 1149−1153.

Vane G, Goetz AFH, Wellman J. 1984. Airborne Imaging Spectrometer: A new tool for remote sensing. IEEE Transactions on International Geoscience and Remote Sensing GE-22: 546−549.

Vane G, Green RO, Chrien TG, Enmark HT, Hansen EG, Porter WM. 1993. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sensing of Environment 44: 117−126.

van der Meer F, Hecker C, van Ruitenbeek F, van der Werff H, de Wijkerslooth C, Wechsler C. 2014. Geologic remote sensing for geothermal exploration: A review. International Journal of Applied Earth Observation and Geoinformation 33: 255−269

van der Meer FD, van der Werff HMA, van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen, MF, van der Meijde M, Carranza EJM, de Smeth JB, Woldai T. 2012. Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation 14: 112–128.

van Ruitenbeek FJA, Cudahy T, van der Meer FD, Hale M. 2012. Characterization of the hydrothermal systems associated with Archean VMS-mineralization at Panorama, Western Australia, using hyperspectral, geochemical and geothermometric data. Ore Geol. Rev. 45: 33–46.

van Ruitenbeek FJA, Cudahy T, Hale M, van der Meer FD. 2005. Tracing fluid pathways in fossil hydrothermal systems with near-infrared spectroscopy. Geology 33: 597–600.

van Ruitenbeek FJA, Debba P, van der Meer FD, Cudahy T, van der Meijde M, Hale M. 2006. Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sensing of Environment 102: 211–222.

Vaughan RG, Hook SJ, Calvin WM, Taranik JV. 2005. Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images. Remote Sensing of Environment 99: 140–158.

Vaughan RG, Calvin WM, Taranik JV. 2003. SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping. Remote Sensing of Environment 85: 48–63.

Verplanck PL, van Gosen BS, Seal RR, McCafferty AE. 2014. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits. U.S. Geological Survey Scientific Investigations Report 2010–5070-J, 58 p.

Vincent RK. 1997. Fundamentals of Geological and Environmental Remote Sensing. New York: Prentice Hall. 480 p.

Walters SG. 1998. Broken Hill-type deposits. Journal of Australian Geology and Geophysics 17: 229-237.

Wang R, Cudahy TJ, Laukamp C, Walshe JL, Bath A, Mei Y, Young C, Roache TJ, Jenkins A, Roberts M, et al. 2017. White mica as a hyperspectral tool in exploration for Sunrise Dam and Kanowna Belle gold deposits, Western Australia. Economic Geology 112, 1153-1176.

Watson K, Kruse FA, Hummer-Miller S. 1990. Thermal infrared exploration in the Carlin trend, northern Nevada. Geophysics 55: 70-79.

Zadeh MH, Tangestani MH, Roldan FV, Yusta I. 2014. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Adv. Space Res. 53: 440–451.

Zamuido JA. 2009. Focusing field exploration efforts, using results from hyperspectral data analysis of the El Capitan gold-platinum group metals-iron deposit, New Mexico. Reviews in Economic Geology 16: 169-176.

Zimmermann R, Brandmeier M, Andreani L, Mhopjeni K, Gloaguen R. 2016. Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia). Remote Sensing 8: 620.




DOI: https://doi.org/10.29150/jhrs.v7i4.25065

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Journal of Hyperspectral Remote Sensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.