Validação de um modelo climático simplificado adaptado para simular os efeitos do aumento da concentração de CO2 associados à teoria dos raios cósmicos galácticos (Validation of a simplified climate model adapted to simulate the effects of increased CO2 concentration associated with the galactic cosmic rays theory )

Emerson Damasceno Oliveira, José Henrique Fernandez, David Mendes, Maria Helena Constantino Spyrides, Weber Andrade Gonçalves


Esta pesquisa teve como proposta principal simular a atuação dos Raios Cósmicos Galácticos (RCG) sobre o balanço energético global na atmosfera terrestre, considerando-se para tanto a atuação do dióxido de carbono (CO2) individualmente e em conjunto com o fluxo dos RCG. Deste modo, desenvolveu-se uma versão modificada do modelo climático Global Resolved Energy Balance (GREB), possibilitando-se a simulação de novos cenários. O novo modelo está sendo chamado de GREB-GCR, do inglês Galactic Cosmic Rays (GCR). Os resultados sugerem que a ação em conjunto dos RCG e do CO2, Experimento 20 (EXP20), apresentou uma melhor representação da temperatura superficial quando comparada à ação individual isolada do CO2, Experimento 12 (EXP12). Este comportamento está evidenciado principalmente sobre os oceanos. Espacialmente identificou-se a partir da Raiz do Erro Quadrático Médio (REQM) que o EXP20 apresentou uma redução do erro sobre a região tropical quando comparado ao EXP12. Todavia, destaca-se que nos dois experimentos o modelo GREB-GCR apresentou erros mais expressivos sobre as regiões polares e locais de grande altitude.




This research had as main proposal the establishment and simulation of the Galactic Cosmic Rays (GCR) role on the global energy balance in the Earth’s atmosphere, considering the performance of carbon dioxide (CO2) individually and together with the GCR fluxes. In this way, a modified version of the Global Resolved Energy Balance (GREB) climate model was developed, making it possible to simulate new scenarios. The new model is being called GREB-GCR. The results suggest that the joint action of GCR and CO2, Experiment 20 (EXP20), presented a better representation on the surface temperature when compared to the exclusive action of CO2, Experiment 12 (EXP12). This fact is mainly evidenced on the oceans. It was identified from the root mean square error (REQM) that the EXP20 presented a spatially reduction of the error on the tropical region while compared to the EXP12. However, it is noteworthy that in both experiments the GREB-GCR model presented more significant errors on high altitude and polar regions.

Key-words: simulation, galactic, GREB-GCR, climate.


simulação, galácticos, GREB-GCR, clima

Texto completo:



Arrhenius, S., 1986. On the influence of carbonic acid on the air temperature of the ground.Philos Mag, v.5, p. 237–276.

Bellon, G., 2011. Monsoon intraseasonal oscillation and land–atmosphereinteraction in an idealized model.ClimDyn, Vol. 37, Issue 5-6, pp. 1065-1079, .doi: 10.1007/s00382-010-0893-0

Biktash, L.Z., 2014. Evolution of Dst Index, cosmic rays and global temperature during solar cycles 20-23. Journal: Advances in Space Research, v.54, p. 2530.doi: 10.1016/j.asr.2014.08.016

Bintanja, R., R.S.W. van de Wal, and J. Oerlemans., 2005. Modelled atmospheric temperatures and global sea levels over the past million years.Nature, v.437, p. 125-128.doi: 10.1038/nature03975

Bray, J.R., 1971. Solar-Climate Relationships in the Post-Pleistocene. Science, New Series, v.171, p. 1242- 1243.

Budyko, M.I., 1969. The effect of solar radiation variations on the climate of the Earth.Tellus, v.21, p. 611–619. doi: 10.1111/j.2153-3490.1969.tb00466.x

Dickinson, R.E., 1975. Solar variability and the lower atmosphere. Bull Am Meteor Soc, v.56, p. 1240. doi: 10.1175/1520-0477(1975)056

Dommenget, D., Flöeter, J., 2011. Conceptual Understanding of Climate Change with a Globally Resolved Energy Balance Model.Climate dynamics, v.37, p. 2143-2165. doi: 10.1007/s00382-011-1026-0

Frigo, E., Pacca, I.G., Pereira-Filho, A.J., Rampelloto, P.H., Rigozo, N.R., 2013. Evidence for cosmic ray modulation in temperature records from the South Atlantic Magnetic Anomaly region. Ann. Geophys., v.31, 1833-1841. doi: 10.5194/angeo-31-1833-2013

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K.

Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M. and Morice, C.P., 2012. Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. Journal of Geophysical Research, Vol.117, D05127. doi:10.1029/2011JD017139

Jones, P.D., New, M., Parker, D.E., Martin, S. and Rigor, I.G., 1999. Surface air temperature and its variations over the last 150 years. Reviews of Geophysics, Vol.37, pp. 173-199. doi:10.1029/1999RG900002

Jones, P.D., Osborn, T.J., Briffa, K.R., Folland, C.K., Horton, B., Alexander, L.V., Parker, D.E. and Rayner, N.A., 2001. Adjusting for sampling density in grid-box land and ocean surface temperature time series. J. Geophys. Res.Vol. 106, pp.3371-3380. doi:10.1029/2000JD900564

Kennedy J.J., Rayner, N.A., Smith, R.O., Saunby, M. and Parker, D.E., 2011. Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850 part 2: biases and homogenisation. Journal of Geophysical Research, Vol.116, D14104. doi:10.1029/2010JD015220

Kim, J. et al., 2016. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Journal: Atmospheric Chemistry and Physics, v.16. p. 293-304. doi: 10.5194/acp-16-293-2016

Kirkby, J., 2007. Cosmic rays and Climate.SurvGeophys, v.28, p. 333-375. doi: 10.1007/s10712-008-9030-6

Lambert, F. H., Chiang, J. C. H., 2007. Control of land-ocean temperature contrast by ocean heat uptake. Geophysical Research Letters, Vol. 34. doi: 10.1029/2007GL029755

Lewis, N., Curry, J.A., 2014. The implications for climate sensitivity of AR5 forcing and heat uptake estimates.Climate Dynamics, v.45, pp 1009-1023. doi: 10.1007/s00382-014-2342-y

Lihua, M.A., 2017. Possible solar modulation of global land-ocean temperature.ActaGeodyn.Geomater., Vol.14, N°2, pp. 251-254. doi: 10.13168/AGG.2017.0008

Morice, C.P., Kennedy, J.J., Rayner, N.A. and Jones, P.D., 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. Journal of Geophysical Research, Vol. 117, D08101. doi:10.1029/2011JD017187

North, G.R., Cahalan, R.F.; Coakley, J.A., 1981. Energy balance climate models.Rev. Geophys. Space Phys. v.19, p. 91-121, 1981.

Osborn, T.J. and Jones, P.D., 2014. The CRUTEM4 land-surface air temperature data set: construction, previous versions and dissemination via Google Earth. Earth System Science, Data6, p. 61-68. doi:10.5194/essd-6-61-2014

Owens, M.J., McCracken, K.G., Lockwood, M., Barnard, L., 2015. The heliospheric Hale cycle over the last 300 years and its implications for a “lost” late 18th century solar cycle. J. Space Weather Space Clim, v.5, A30. doi: 10.1051/swsc/2015032

Pudovkin, M.I., Veretenenko, S.V., 1997. Effects of the galactic cosmic ray variations on the solar radiation input in the lower atmosphere. J Atmos Sol Terr Phys, v.59, p. 1739–1746. doi: 10.1016/S1364-6826(96)00183-6

Puetz, S.J., Prokoph, A., Borchardt, G., 2016. Evaluating alternatives to the Milankovitch theory. Journal of Statistical Planning and Inference, v.170, p. 158-165. doi: 10.1016/j.jspi.2015.10.006

Rusov, V.D. et al., 2010. Galactic Cosmic Rays - Clouds Effect and Bifurcation Model of the Earth Global Climate. Part 1.Theory.Journal of Atmospheric and Solar-Terrestrial Physics, v.72, p. 398-408. doi: 10.1016/j.jastp.2009.12.007

Sellers, W.D., 1969. A global climatic model based on the energy balance of the Earth– atmosphere system. J. Appl. Meteor, v.8, p. 392–400. doi: 10.1175/1520-0450(1969)008

Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P.C.B, Wild, M., 2016. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nature Geoscience, v9, pp 286-289. doi: 10.1038/NGEO2670

Svensmark, H., Enghoff, M.B., Pedersen, J.O.P., 2013. Response of cloud condensation nuclei (> 50 nm) to changes ion-nucleation.Journal: Physics Letters A, v.377, p. 2343-2347. doi: 10.1016/j.physleta.2013.07.004

Svensmark, H., Friis-Christensen, E., 1997. Variation in cosmic ray flux and global cloud coverage a missing link in solar–climate relationships. J Atmos Sol Terr Phys, v.59, p. 1225. doi: 10.1016/S1364-6826(97)00001-1

Tsonis, A.A., Deyle, E.R., May, R.M., Sugihara, G., Swanson, K., Verbeten, J.D and Wang, G., 2015. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature. PNAS, v.112, nº.11, p. 3253-3256. doi: 10.1073/pnas.1420291112

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.


Revista Brasileira de Geografia Física - eISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License