An improved algorithm for estimating chlorophyll-a in coastal waters of southern Brazil from multispectral satellite images
DOI:
https://doi.org/10.26848/rbgf.v18.1.p633-645Keywords:
Remote sensing, MonitoringAbstract
Remote sensing chlorophyll-A (CLA) estimates from global models have been used to support decision making in southern Brazil, the most important bivalve mollusks production region (~9 thousand tons in 2022) in the country, and a recent study indicated that these estimates poorly represent the actual levels of CLA. The aim of the study was to develop an improved algorithm for estimating CLA in these coastal waters from multispectral images. A CLA database generated in situ between 2007 and 2009 was used to calibrate and validate algorithms based on spectral data from the Medium Resolution Imaging Spectrometer (MERIS) (ENVISAT satellite) (300m spatial resolution), including algorithms based on red and near-infrared bands: two bands (2B and M2B), three bands (3B) and the Normalized Difference Chlorophyll Index (NDCI and MNDCI). Outputs from the global models OC4ME and Neural Network were also evaluated. NIR-red algorithms outputs correlated significantly with the measured CLA, except for MNDCI. The best performing models during the calibration, those based on 2B and NDCI (R2 = 0.37, residual standard error = 2.57 mg.m-3), were validated and fitted better the measured data (R2 >= 0.22) and showed lower RMSE values (around 2.5 mg.m-3) than the global models’ outputs, which did not even correlate significantly (p>0.05) with in situ CLA measurements. The developed models performed better than the global models evaluated nevertheless they have a limited prediction power when compared to regional algorithms developed elsewhere and this is probably linked to the low range of CLA measurements used to train the models.
References
Aranha, T. R. B. T., Martinez, J. M., Souza, E. P., Barros, M. U. G., & Martins, E. S. P. R. (2022). Remote analysis of the chlorophyll-a concentration using Sentinel-2 MSI images in a Semiarid environment in northeastern Brazil. Water, 14 (3), 451. https://doi.org/10.3390/w14030451.
Bresciani M., Cazzaniga I., Austoni M., Sforzi T., Buzzi F., Morabito G., & Giardino C. (2018). Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiology, 824(1), 197-214. https://doi.org/10.1007/s10750-017-3462-2(0123456789().,-volV()0123456789().,-volV).
Bonilla, S., Aguilera, A., Aubriot, L., Huszar, V., Almanza, V., Haakonsson, S., Izaguirre, I., O'Farrell, I., Salazar, A., Becker, V., Cremella, B., Ferragut, C., Hernandez, E., Palacio, H., Rodrigues, L. C., Sampaio da Silva, L. H., Santana, L. M., Santos, J., Somma, A., & Antoniades, D. (2023). Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas. Harmful Algae, 121. https://doi.org/10.1016/j.hal.2022.102367
Dai, Y., Yang, S., Zhao, D., Hu, C., Xu, W., Anderson, D.M.; Li, Y., Song, X., Boyce, D., & Gibson, L. (2023). Coastal phytoplankton blooms expand and intensify in the 21st century. Nature, 615, 280-284. http://dx.doi.org/10.1038/s41586-023-05760-y.
Dall'Olmo, G., Gitelson, A. A., & Rundquist, D. C. (2003). Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophysical Research Letters, 30(18). https://doi.org/10.1029/2003GL018065.
Dekker, A. G. (1993). Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Amsterdam: Free University.
EPAGRI - Agricultural Research and Rural Extension Company of Santa Catarina. (2020). Database of environmental variables of Santa Catarina. Epagri, ISSN 2674-9521.
ESA, (2006). MERIS Product Handbook. https://earth.esa.int/eogateway/documents/20142/37627/MERIS-product-handbook.pdf.
Escudero, L., Ledesma, J., Xu, H., & Grados, D. (2024). Análisis comparativo de la clorofila-a del sensor Modis-Aqua con datos in situ frente a la costa peruana durante el verano 2018. Boletin Instituto del Mar del Perú, 39 (1), 65-78. http://dx.doi.org/10.53554/boletin.v39i1.406.
Flores-Anderson, A. I., Griffin, R., Dix, M., Romero-Oliva, C. S., Ochaeta, G., Skinner-Alvarado, J., Ramirez Moran, M. V., Hernandez, B., Cherrington, E., Page, B., & Barreno, F. (2020). Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00007.
Freire A. S., Varela A. R. D., Fonseca A. L., Menezes B. S., Fest C. B., Obata C. S., Gorri C., Franco D., Machado E. C., Barros G., Molesani, L. S., Madureira, L. A. S., Coelho, M. P., Carvalho, M., & Pereira, T. l. (2017). The Oceanographic Environment. In: Segal, B., Freire, As., Lindner, A., Krajevski, Jp., Soldateli, M. (Eds.), Monitoring of the Marine Biological Reserve of Arvoredo and Surroundings. Florianopolis. Federal University of Santa Catarina, 159–200.
Garcia, C. A. E., Garcia, V. M. T., & McClain, C. R. (2005). Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment. 95 (1), 125-137. https://doi.org/10.1016/j.rse.2004.12.006.
Gilerson, A. A., Gitelson, A. A., Zhou, J., Gurlin, D., Moses, W., Ioannou, I., & Ahmed, S. A. (2010). Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Optics Express, 18 (23), 24109. https://doi.org/10.1364/OE.18.024109.
Gurlin, D., Gitelson, A. A., & MOSES, W. J. (2011). Remote estimation of chl-a concentration in turbid productive waters — Return to a simple two-band NIR-red model? Remote Sensing of Environment, 115 (12), 3479-3490. https://doi.org/10.1016/j.rse.2011.08.011.
Hunter, P. D., Tyler, A. N., Willby, N. J., & Gilvear, D. J. (2008). The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnology and Oceanography, 53 (6), 2391-2406. https://doi.org/10.4319/lo.2008.53.6.2391.
Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems. 3 ed. Cambridge: Cambridge University Press. 528p.
Lins, R., Martinez, J. M., Marques, D. M., Cirilo, J., & Fragoso, C. (2017). Assessment of Chlorophyll-a Remote Sensing Algorithms in a Productive Tropical Estuarine-Lagoon System. Remote Sensing, 9 (6), 516-530. https://doi.org/10.3390/rs9060516.
Mascarenhas Jr., A. S., & IKEDA, Y. (1994). Water bodies. IN. Castro, F. B. M., Campos, E. J. D., Mascarenhas Jr., A. S., Ikeda, Y., Melo, F. E., Lorenzzetti J. A., Garcia, C. A. E., Moller Jr, O. O., Weber, R. R., Knoppers, B. A., Fillmann, G. Oceanic and Coastal Environmental Diagnosis of the South and Southeast Regions of Brazil. Physical Oceanography, 363.
Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394-406. https://doi.org/10.1016/j.rse.2011.10.016.
Mishra, D. R., Schaeffer, B. A., & Keith, D. (2014). Performance evaluation of normalized difference chlorophyll index in northern Gulf of Mexico estuaries using the Hyperspectral Imager for the Coastal Ocean. Giscience & Remote Sensing, 51 (2), 175-198. https://doi.org/10.1080/15481603.2014.89558.
Moore, T. S., Campbell, J. W., & Dowell, M. D. (2009). A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sensing of Environment, 113 (11), 2424-2430. https://doi.org/10.1016/j.rse.2009.07.016.
Moraes, V. M. C., Ribeiro, H. M. C., Oliveira, É. S., Picanço, A. R. S., Meireles, R. R., Almeida, T. C., Silva, F. C.; Santos, W. A. S., Anaisse, C. C. R., & Carneiro, C. R. O. (2023). Avaliação Comparativa entre Dados de Sensor Remoto e In Situ para Predição do Índice de Estado Trófico a partir da Clorofila “a” na região do Marajó. Revista Brasileira de Geografia Física, 6 (6), 3073-3087. http://dx.doi.org/10.26848/rbgf.v16.6.p3073-3087.
Morel, A., Huot, Y., Gentili, B., Werdell, P. J., Hooker, S. B., & Franz, B. A. (2007). Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sensing of Environment, 111 (1), 69-88. https://doi.org/10.1016/j.rse.2007.03.012.
Nazeer, M., Wong, M.S., & Nichol, J.E. (2017). A new approach for the estimation of phytoplankton cell counts associated with algal blooms. Science of The Total Environment. 590–591. https://doi.org/10.1016/j.scitotenv.2017.02.18.
NCCOS - National Centers for Coastal Ocean Science. Sistema de monitoramento de proliferação de algas nocivas. USA.gov. 2023. https://coastalscience.noaa.gov/science-areas/habs/hab-monitoring-system/.
Neil, C., Spyrakos, E., Hunter, P.D., & Tyler, A.N. (2020). A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sensing Of Environment, 229, 159-178. http://dx.doi.org/10.1016/j.rse.2019.04.027.
Ninio, S., Lupu, A., Viner-Mozzini, Y., Zohary, T., & Sukenik, A. (2020). Multiannual variations in Microcystis bloom episodes – Temperature drives shift in species composition. Harmful Algae, 92, 101710. http://dx.doi.org/10.1016/j.hal.2019.101710.
Oliveira, E. N., Fernandes, A. M., Kampel, M., Cordeiro, R. C. C., Brandini, N., Vinzon, S. B., Grassi, R. M., Pinto, F. N., Fillipo, A. M., & Paranhos, R. (2016). Assessment of remotely sensed chlorophyll-a concentration in Guanabara Bay, Brazil. Journal of Applied Remote Sensing. 10(2), https://doi.org/10.1117/1.JRS.10.026003.
Pinto, L. R. C., Filippo, A., Souza, L. S., Fernandes, A. M., Oliveira, I. A., Viana, C. G., & Romano, A. L. T. (2019). Estimativa do Tempo de Renovação da Água do Complexo Lagunar da Baixada de Jacarepaguá Através de Modelagem Numérica. Anuário do Instituto de Geociências - UFRJ, 42 (3), 289-298. https://doi.org/10.11137/2019_3_289_298.
Qi, L., & Hu, C. (2021). To what extent can Ulva and Sargassum be detected and separated in satellite imagery? Harmful Algae, 103. https://doi-org.ez71.periodicos.capes.gov.br/10.1016/j.hal.2021.102001
R Core Team. A: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. URL https://www.R-project.org/.
Resgalla, C., Jr. (2011). The holoplankton of the Santa Catarina coast, southern Brazil. Anais Da Academia Brasileira De Ciencias, 83, 575–588.
Ruddick, K. G., GONS, H. J., Rijkeboer, M., & Tilstone, G. (2001). Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Applied optics, 40 (21), 3575-3585.
Ruiz-villarreal, M., Sourisseau, M., Anderson, P., Cusack, C., Neira, P., Silke, J., Rodriguez, F., Ben-gigirey, B., Whyte, C., Giraudeau-potel, S., Quemener, L., Arthur, G., & Davidson, K. (2022). Novel Methodologies for Providing In Situ Data to HAB Early Warning Systems in the European Atlantic Area: The PRIMROSE Experience. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.791329
Schramm, M. A., & Proença, L. A. O. (2005). Florações de Algas Nocivas e o Risco das Ficotoxinas em Moluscos. Panorama da Aquicultura, 15(89), 25-27. https://panoramadaaquicultura.com.br/floracoes-de-algas-nocivas-e-o-risco-das-ficotoxinas-em-moluscos/#:~:text=Flora%C3%A7%C3%B5es%20de%20algas%20nocivas%20X%20Cultivo%20de%20moluscos&text=A%20contamina%C3%A7%C3%A3o%20dos%20moluscos%20pode,Figura%201)%2C%20provocando%20doen%C3%A7as.
Silva, G. S. M., & Garcia, C. A. E. (2021). Evaluation of Ocean Chlorophyll-A Remote Sensing Algorithms Using in Situ Fluorescence Data in the Southern Brazilian Coastal Waters. Ocean and coastal research, 69, 1-2. https://doi.org/10.1590/2675-2824069.20-014gsdms.
SNAP - ESA Sentinel Application Platform v2.0.2, 2022.
Simões, P. H. C., Costa, J. F. S., Provenza, M. M., Xavier, V. L., & Goulart, J. L. J. (2021). Ressurgência: um Estudo Estatístico de Temperatura e Salinidade da Boia 19°00’S34°00’W. Revista internacional de ciências, 11(2), 194-213. https://doi.org/10.12957/ric.2021.55302.
Souza, R. V., Novaes, A. L. T., Garbossa, L. H. P., & Rupp, G. S., (2017). Variações de salinidade nas Baías Norte e Sul da Ilha de Santa Catarina: implicações para o cultivo de moluscos bivalves. Agropecuária Catarinense 29 (3), 45–48. https://doi.org/10.52945/rac.v29i3.147.
Souza, R. V., & Santos, A. A. (2021). Síntese anual da agricultura de Santa Catarina. pp. 141- 143. Florianópolis: Epagri/Cepa.
Suplicy, F. M., Vianna, L. F. N, Rupp, G. S., Novaes, A. L. T., Garbossa, L. H. P., & Souza, R. V. (2015). Planning and management for sustainable coastal aquaculture development in Santa Catarina State, south Brazil. Reviews in Aquaculture. https://doi.org/10.1111/raq.12107
Valério. L. P. (2013). Análises e Estimativas Bio-Ópticas de Dados Da Estação Antares-Ubatuba, Litoral Norte de São Paulo. Dissertação de Mestrado do Curso de Pós-Graduação em Sensoriamento Remoto. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2013/10.24.20.04/doc/publicacao.pdf
Vianna, L.F., Trabaquini, K., Garbossa, L.H.P., & Guzenski, J. (2016). Acompanhamento remoto do aumento na concentração de clorifila-a se apresenta como um instrumento potencial para tomada de decisão e análises sobre os impactos das ficotoxinas na maricultura. Panorama da Aquicultura. 26, 46–53.
Vianna, L. F. N., Souza, R. V., Schramm, M. A., & Alves, T. P. (2023). Using climate reanalysis and remote sensing-derived data to create the basis for predicting the occurrence of algal blooms, harmful algal blooms and toxic events in Santa Catarina, Brazil. Science of the Total Environment, 880, 163086. https://doi.org/10.1016/j.scitotenv.2023.163086.
Wang, J., Kuang, C., Ou, L., Zhang, Q., Qin, R., Fan, J., & Zou, Q. (2022). A Simple Model for a Fast Forewarning System of Brown Tide in the Coastal Waters of Qinhuangdao in the Bohai Sea, China. Applied Sciences, 12 (13), 6477. http://dx.doi.org/10.3390/app12136477.
Watanabe, F. S. Y., Alcântara, E., & Stech, J. L. (2018). High performance of chlorophyll-a prediction algorithms based on simulated OLCI Sentinel-3A bands in cyanobacteria-dominated inland Waters. Advances in Space Research, 62 (2), 265-273. https://doi.org/10.1016/j.asr.2018.04.024.
Xiao, X., Peng, Y., Zhang, W., Yang, X., Zhang, Z., Ren, B., Zhu, G., & Zhou, S. (2024) Current status and prospects of algal bloom early warning technologies: a review. Journal Of Environmental Management, 349, 119510. http://dx.doi.org/10.1016/j.jenvman.2023.119510.
You, L., Tong, X., Te, S.H., Tran, N.H., Bte Sukarji, N.H., He, Y., & Gin, K.Y.(2022). Multi-class secondary metabolites in cyanobacterial blooms from a tropical water body: distribution patterns and real-time prediction. Water Research, 212. https://doi-org.ez71.periodicos.capes.gov.br/10.1016/j.watres.2022.118129
Zhou, X., Rowe, M., Liu, Q., & Xue, P. (2023). Comparison of Eulerian and Lagrangian transport models for harmful algal bloom forecasts in Lake Erie. Environmental Modelling & Software, 162. https://doi-org.ez71.periodicos.capes.gov.br/10.1016/j.envsoft.2023.105641
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Talita Montagna, Alexander Christian Vibrans, Robson Ventura de Souza

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Revista Brasileira de Geografia Física agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted to make their work available online before or during the editorial process, on academic social networks, digital repositories, or preprint servers. After publication in Revista Brasileira de Geografia Física, authors are expected to update the preprint or postprint versions on the platforms where they were originally made available, providing a link to the final published version and any other relevant information, with proper recognition of authorship and the initial publication in this journal.
You are free to:
Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.