Puma’s (Puma concolor) last refugees in Brazil: priority areas for conservation from the perspective of geographical modelling
DOI:
https://doi.org/10.51359/2238-6211.2021.246100Keywords:
Puma concolor, geographic distribution, Cougar, modelling, priority areasAbstract
The modeling of geographic distribution of species is an important biogeography tool that meets conservation actions or allows theoretical approaches on the distribution of species. In this study, we modeled the geographic distribution of the puma (Puma concolor) in Brazil through four algorithms (Environmental Distance, GARP, Maximum Entropy, BioClim). The occurrence data from puma were obtained from the speciesLink platform and through a literature review. Bioclimatic variables available on the home page of WorldClim (www.worldclim.com) were selected. Overall, 280 puma records were obtained in Brazil. The models indicate that the Caatinga, Pantanal, Atlantic Forest (north of San Francisco river) and Pampa biomes represent less environmental suitability. In contrast, the Atlantic portion located in the southeast under the influence of the Serra do Mar and neighboring Cerrado, is one of the areas most likely to harbor populations of Puma concolor. Cerrado and Amazon also had medium and high environmental suitability. This information indicates the need for establishing new protected areas where the probability was lower than expected. In addition, measures to minimize the impacts of hunting and increase landscape connectivity should be strengthened to ensure the persistence of these populations in the medium and long terms.References
ANGELIERI, C.C.S.; ADAMS-HOSKING, C.; de BARROS, K.M.P.M. Using species distribution models to predict potential landscape restoration effects on puma conservation. PLoS One, v. 11, n. 1, 2016.
BEIER, P. Determining minimum habitat areas and habitat corridors for cougars. Conservation Biology, v. 7, n. 1, p. 94-108, 1993.
BEZERRA, A. M.; LAZAR, A.; BONVICINO, C. R. & CUNHA, A. S. Subsidies for a poorly known endemic semiarid biome of Brazil: non-volant mammals of an eastern region of Caatinga. Zoological Studies, v. 53, n. 1, p. 16, 2014.
BUENO, B. A. A. Modelagem de nicho ecológico aplicada à conservação do pato mergulhão (Mergus octosetaceus, Vieillot, 1817) no Brasil. Dissertação: Mestrado em Ecologia e Conservação de Recursos Naturais. Universidade Federal de Uberlândia. 113 p. 2012.
CARPENTER, G.; GILLISON, A. N.; WINTER, J. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity & Conservation, v. 2, n. 6, p. 667-680, 1993.
CRAWSHAW, P.; QUIGLEY, H. A ecologia do Jaguar ou onça pintada no Pantanal. Estudos Bioecológicos do Pantanal.Instituto Brasileiro de Desenvolvimento Florestal (IBDF)/DN (Brasília), 1984.
CRIA. 2015. SpeciesLink. Centro de Referência em Informação Ambiental, Campinas. Electronic Database accessible at http://www.splink.org.br/index. Acessado em 15 nov 2015.
CURRIER, M. J. P. Felis concolor. Mammalian species, p. 1-7, 1983.
CUYCKENS, G. A. E.; PEROVIC, P. G.; CRISTOBAL, L. How are wetlands and biological interactions related to carnivore distributions at high altitude?. Journal of Arid Environments, v. 115, p. 14-18, 2015.
DE ANGELO, C.; PAVIOLO, A.; DI BITETTI, M. Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Paraná Atlantic Forest. Diversity and Distributions, v. 17, n. 3, p. 422-436, 2011.
DIAS, D. D. M., LIMA MASSARA, R., de CAMPOS, C. B., & RODRIGUES, F. H. G.. Human activities influence the occupancy probability of mammalian carnivores in the Brazilian Caatinga. Biotropica, v. 51, n. 2, p. 253-265, 2019.
EISENBERG, John F. The density and biomass of tropical mammals. Conservation biology: an evolutionary-ecological perspective, p. 35-55, 1980.
ELITH, J.; PHILLIPS, S. J.; HASTIE, T.; DUDÍK, M.; CHEE, Y. E. & YATES, C. J. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, v. 17, n. 1, p. 43-57, 2011
ENGLER, R.; GUISAN, A.; RECHSTEINER, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo‐absence data. Journal of Applied Ecology, v. 41, n. 2, p. 263-274, 2004.
ESPINOSA, C. C; TRIGO, T. C.; TIRELLI, F. P.; SILVA, L. G.; EIZIRIK, E.; QUEIROLO, D.; MAZIM, F. D.; PETERS, F. B.; FAVARINI, M. O.; FREITAS, T. R. O. de. Geographic distribution modeling of the margay (Leopardus wiedii) and jaguarundi (Puma yagouaroundi): a comparative assessment. Journal of Mammalogy, v. 99, n. 1, p. 252-262, 2018.
FENG, X.; PAPEŞ, M. Ecological niche modelling confirms potential north‐east range expansion of the nine‐banded armadillo (Dasypus novemcinctus) in the USA. Journal of Biogeography, v. 42, n. 4, p. 803-807, 2015.
FERNANDES-FERREIRA, H.; GURGEL-FILHO, N. M.; FEIJÓ, A.; MENDONÇA, S. V.; DA NÓBREGA ALVES, R. R. & LANGGUTH, A. Non-volant mammals from Baturité Ridge, Ceará state, Northeast Brazil. Check List, v. 11, n. 3, p. 1630, 2015.
FOLEY, R. A reconsideration of the role of predation on large mammals in tropical hunter-gatherer adaptation. Man, p. 393-402, 1982.
FORD, A. T.; SUNTER, E. J.; FAUVELLE, C.; BRADSHAW, J. L.; FORD, B.; HUTCHEN, J.; PHILLIPOW, N.; TEICHMAN, K. J. Effective corridor width: linking the spatial ecology of wildlife with land use policy. European Journal of Wildlife Research, v. 66, n. 4, p. 1-10, 2020.
GIANNINI, Tereza Cristina. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia-Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, v. 63, n. 3, 2012.
GITTLEMAN, J. L.; HARVEY, Paul H. Carnivore home-range size, metabolic needs and ecology. Behavioral Ecology and Sociobiology, v. 10, n. 1, p. 57-63, 1982.
GUISAN, A.; THUILLER, W. Predicting species distribution: offering more than simple habitat models. Ecology letters, v. 8, n. 9, p. 993-1009, 2005.
HUTCHINSON, G. E. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22:415–427, 1957.
MIOTTO, R. A.; RODRIGUES, F. P.; CIOCHETI, G., & GALETTI, P. M. Determination of the minimum population size of pumas (Puma concolor) through fecal DNA analysis in two protected Cerrado areas in the Brazilian southeast. Biotropica, v. 39, n. 5, p. 647-654, 2007.
MORENO, Ricardo S.; KAYS, Roland W. & SAMUDIO JR, Rafael. Competitive release in diets of ocelot (Leopardus pardalis) and puma (Puma concolor) after jaguar (Panthera onca) decline. Journal of Mammalogy, v. 87, n. 4, p. 808-816, 2006.
NIX, H. A. A biogeographic analysis of Australian elapid snakes. Atlas of elapid snakes of Australia, v. 7, p. 4-15, 1986.
PETERSON, A. T.; SOBERÓN, J.; PEARSON, R. G.; ANDERSON, R.; MARTÍNEZ-MEYER, E.; NAKAMURA, M.; ARAÚJO, M. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton, 2011.
PHILLIPS, S. J.; ANDERSON, R. P.; SCHAPIRE, R. E. Maximum entropy modeling of species geographic distributions. Ecological modelling, v. 190, n. 3, p. 231-259, 2006.
PHILLIPS, Steven J.; DUDÍK, Miroslav. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, v. 31, n. 2, p. 161-175, 2008.
ROBERGE, JEAN‐MICHEL; ANGELSTAM, P. E. R. Usefulness of the umbrella species concept as a conservation tool. Conservation Biology, v. 18, n. 1, p. 76-85, 2004.
SANTANA, R. O.; DELGADO, R. C.; SCHIAVETTI, A. The past, present and future of vegetation in the Central Atlantic Forest Corridor, Brazil. Remote Sensing Applications: Society and Environment, v. 20, p. 100357, 2020.
SCHWAIDA, S. F.; CICERELLI, R. E.; ALMEIDA, T. D. & ROIG, H. L. Challenges and strategies on implementing an ecological corridor between protected areas in Cerrado biome. Revista Árvore, v. 41, n. 6, 2018.
SCOGNAMILLO, D.; MAXIT, I. E.; SUNQUIST, M. & POLISAR, J. Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. Journal of Zoology, v. 259, n. 03, p. 269-279, 2003.
SILVA JR, A. P.; MENDES PONTES, A. R. The effect of a mega-fragmentation process on large mammal assemblages in the highly-threatened Pernambuco Endemism Centre, north-eastern Brazil. Biodiversity and conservation, v. 17, n. 6, p. 1455-1464, 2008.
SUNQUIST, M. & SUNQUIST, F. Wild cats of the world. University of Chicago Press, 2002.
STOCKWELL, D. R.B.; NOBLE, I. R. Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Mathematics and computers in simulation, v. 33, n. 5, p. 385-390, 1992.
STOCKWELL, D. R.B. Genetic algorithms II. In: Machine learning methods for ecological applications. Springer US, 1999. p. 123-144.
STOCKWELL, D.; PETERS, D. P. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, v. 13, n. 2, p. 143-158, 1999.
SWEANOR, L. L.; LOGAN, K. A.; HORNOCKER, M. G. Cougar dispersal patterns, metapopulation dynamics, and conservation. Conservation Biology, v. 14, n. 3, p. 798-808, 2000.
TERBORGH, J. The big things that run the world - a sequel to EO Wilson. Conservation Biology,v. 2, n. 4, p. 402-403, 1988.
TERBORGH, J. Maintenance of diversity in tropical forests. Biotropica, p. 283-292, 1992.
TERBORGH, J. The fate of tropical forests: a matter of stewardship. Conservation biology, v. 14, n. 5, p. 1358-1361, 2000.
THORN, J. S.; NIJMAN, V.; SMITH, D.; NEKARIS, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Diversity and Distributions, v. 15, n. 2, p. 289-298, 2009.
VICKERS, T. W.; SANCHEZ, J. N.; JOHNSON, C. K.; MORRISON, S. A.; BOTTA, R.; SMITH, T.; COHEN, B. S.; HUBER, P. R.; ERNEST, H. B.; BOYCE, W. M. Survival and mortality of pumas (Puma concolor) in a fragmented, urbanizing landscape. PloS one, v. 10, n. 7, p. e0131490, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Felipe Francisco Gomes-Silva, Edson Silva Barbosa Leal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantêm os direitos autorais e concedem à REVISTA DE GEOGRAFIA da Universidade Federal de Pernambuco o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição 4.0 Internacional. CC BY - . Esta licença permite que os reutilizadores distribuam, remixem, adaptem e criem a partir do material em qualquer meio ou formato, desde que a atribuição seja dada ao criador. A licença permite o uso comercial.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
d) Os conteúdos da REVISTA DE GEOGRAFIA estão licenciados com uma Licença Creative Commons Atribuição 4.0 Internacional. CC BY - . Esta licença permite que os reutilizadores distribuam, remixem, adaptem e criem a partir do material em qualquer meio ou formato, desde que a atribuição seja dada ao criador. A licença permite o uso comercial.
No caso de material com direitos autorais a ser reproduzido no manuscrito, a atribuição integral deve ser informada no texto; um documento comprobatório de autorização deve ser enviado para a Comissão Editorial como documento suplementar. É da responsabilidade dos autores, não da REVISTA DE GEOGRAFIA ou dos editores ou revisores, informar, no artigo, a autoria de textos, dados, figuras, imagens e/ou mapas publicados anteriormente em outro lugar.