Determining factors of continuance intention of use regarding Pix payment services on Brazil
DOI:
https://doi.org/10.51359/2526-7884.2023.255198Keywords:
Pix Payment Services, Continuance of Use, Expectation-Confirmation Model, Technology Acceptance Model, Technology ReadinessAbstract
The need to understand consumer behavior regarding technological innovations is essential for companies to develop their strategies to meet the needs of their customers and become more competitive in the market. The main objective of this work was to investigate the main factors that influence the continuance of use of Pix payment service in Brazil. This research used the adapted Expectation-Confirmation Model (ECM), along with Technology Acceptance Model (TAM) and Technology Readiness (TR) and Perceived Risk (PR) constructs. Data was collected through a survey with 467 respondents. These data were analyzed using the Structural Equation Modeling (SEM) technique. The results indicated that consumer satisfaction is a strong predictor of intention to continue, as well as perceived usefulness and ease of use, which has an indirect influence. However, the perceived risk, even being significant in relation to the perceived usefulness, showed little effect in the model.
References
Almeida, C. B. S., Araújo, M. R. M. de, & Luft, M. C. M. S. (2020). Modelo explicativo para intenção de uso de serviços de fintechs: A perspectiva dos consumidores brasileiros das gerações Y e Z. Revista dos Mestrados Profissionais, 9(2), 202–225.
Banco Central do Brasil - BCB. (2022). Pix. Pix. https://www.bcb.gov.br/estabilidadefinanceira/pix
Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Quarterly, 25(3), 351–370.
Blut, M., & Wang, C. (2020). Technology readiness: A meta-analysis of conceptualizations of the construct and its impact on technology usage. Journal of the Academy of Marketing Science, 48(4), 649–669. https://doi.org/10.1007/s11747-019-00680-8
Borges, L., Figueiredo, P., Passos, F. U., & Santos, E. M. (2021). Determinant factors of market acceptance of the digital banking technology in the brazilian context. Marketing & Tourism Review, 6(2), 1–36.
Braga, B. S., Barbosa, J. G. P., & Bouzada, M. A. C. (2017). The Influence of Demographic Characteristics of Users on Their Adoption Decision of Mobile Banking. PMKT - Revista Brasileira de Pesquisas de Marketing, Opinião e Mídia, 10(2), 136–153.
Caldeira, T. A., Ferreira, J. B., Freitas, A., & Falcão, R. P. de Q. (2021). Adoção de Pagamentos Móveis no Brasil: Prontidão para a Tecnologia, Confiança e Qualidade Percebida. BBR. Brazilian Business Review, 18, 415–432. https://doi.org/10.15728/bbr.2021.18.4.4
Chen, S., Chen, H., & Chen, M. (2009). Determinants of satisfaction and continuance intention towards self‐service technologies. Industrial Management & Data Systems, 109(9), 1248–1263.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results [(Ph.D. in Management)]. Massachusetts Institute of Technology.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003.
Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: An empirical study of mobile instant messages in China. International Journal of Information Management, 30(4), 289–300. https://doi.org/10.1016/j.ijinfomgt.2009.10.001
Duarte, A., Frost, J., Gambacorta, L., Koo Wilkens, P., & Shin, H. S. (2022). Central Banks, the Monetary System and Public Payment Infrastructures: Lessons from Brazil’s Pix. BIS Bulletin, 52. https://doi.org/10.2139/ssrn.4064528
Federação Brasileira de Bancos - FEBRABAN. (2022). Pesquisa FEBRABAN de Tecnologia Bancária 2022. https://cmsarquivos.febraban.org.br/Arquivos/documentos/PDF/pesquisa-febraban-2022-vol-3.pdf
Ferreira, J. B., Rocha, A. da, & Silva, J. F. da. (2014). Impacts of technology readiness on emotions and cognition in Brazil. Journal of Business Research, 67(5), 865–873.
Ferreira, R. de M., & Prearo, L. C. (2018). Determinantes no uso do mobile banking para operações e transações financeiras em dispositivos móveis: Um estudo financeiro no município de São Paulo. Navus: Revista de Gestão e Tecnologia, 8(3), 23–36.
Foroughi, B., Iranmanesh, M., & Hyun, S. S. (2019). Understanding the determinants of mobile banking continuance usage intention. Journal of Enterprise Information Management, 32(6), 1015–1033. https://doi.org/10.1108/JEIM-10-2018-0237
Franque, F. B., Oliveira, T., & Tam, C. (2021). Understanding the factors of mobile payment continuance intention: Empirical test in an African context. Heliyon, 7(8), e07807. https://doi.org/10.1016/j.heliyon.2021.e07807
Franque, F. B., Oliveira, T., Tam, C., & Santini, F. de O. (2020). A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Research, 31(1), 123–158. https://doi.org/10.1108/INTR-03-2019-0103
Grohmann, M. Z., Radons, D. L., Battistella, L. F., & Anschau, T. P. (2014). Understanding of Satisfaction and Intention of Continuity of Use of Technology Through the Index of Technological Readiness. RAI - Revista de Administração e Inovação, 11(3), 101–124. https://doi.org/10.11606/rai.v11i3.100217
Gupta, A., Yousaf, A., & Mishra, A. (2020). How pre-adoption expectancies shape post-adoption continuance intentions: An extended expectation-confirmation model. International Journal of Information Management, 52, e102094. https://doi.org/10.1016/j.ijinfomgt.2020.102094
Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis (7 edition). Prentice Hall.
Hossain, A., Hossain, S., & Jahan, N. (2018). Predicting Continuance Usage Intention of Mobile Payment: An Experimental Study of Bangladeshi Customers. Asian Economic and Financial Review, 8(4), 487–498.
Huang, S. Y. B., & Lee, C.-J. (2022). Predicting continuance intention to fintech chatbot. Computers in Human Behavior, 129, 107027. https://doi.org/10.1016/j.chb.2021.107027
Humbani, M., & Wiese, M. (2019). An integrated framework for the adoption and continuance intention to use mobile payment apps. International Journal of Bank Marketing, 37(2), 646–664. https://doi.org/10.1108/IJBM-03-2018-0072
Kumar, A., Adlakaha, A., & Mukherjee, K. (2018). The effect of perceived security and grievance redressal on continuance intention to use M-wallets in a developing country. International Journal of Bank Marketing, 36(7), 1170–1189. https://doi.org/10.1108/IJBM-04-2017-0077
Levitt, T. (1960). Marketing Myopia. Harvard Business Review, 38, 24–47.
Liljander, V., Gillberg, F., Gummerus, J., & van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13(3), 177–191.
Lin, C.-H., Shih, H.-Y., & Sher, P. J. (2007). Integrating technology readiness into technology acceptance: The TRAM model. Psychology and Marketing, 24(7), 641–657.
Luna, I. R. de, Montoro-Ríos, F., Liébana-Cabanillas, F., & Luna, J. G. de. (2017). NFC technology acceptance for mobile payments: A Brazilian Perspective. Revista Brasileira de Gestão de Negócios, 19(63), 82–103. https://doi.org/10.7819/rbgn.v0i0.2315
Mainardes, E. W., Costa, P. M. F., & Nossa, S. N. (2022). Customers’ satisfaction with fintech services: Evidence from Brazil. Journal of Financial Services Marketing. https://doi.org/10.1057/s41264-022-00156-x
Mangini, E. R., Silva, N. G. da, & Carvalho, J. R. C. de. (2020). Virtual Banks and the Perceived Risk and Development and Effort Expectancy on Behavioral Intention. REMark. Revista Brasileira de Marketing, 19(4), 838–862. https://doi.org/10.5585/remark.v19i4.16283
Meirelles, F. S. (2022). Panorama do Uso de TI no Brasil—2022. Portal FGV. https://portal.fgv.br/artigos/panorama-uso-ti-brasil-2022
Nurlaily, F., Aini, E. K., & Asmoro, P. S. (2021). Understanding the FinTech continuance intention of Indonesian users: The moderating effect of gender. Business: Theory and Practice, 22(2), 290–298. https://doi.org/10.3846/btp.2021.13880
Oliver, R. L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. Journal of Marketing Research, 17(4), 460–469. https://doi.org/10.2307/3150499
Parasuraman, A. (2000). Technology Readiness Index (TRI) A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2(4), 307–320.
Parasuraman, A., & Colby, C. L. (2014). An Updated and Streamlined Technology Readiness Index: TRI 2.0. Journal of Service Research, 01–17.
Phuong, N. N. D., Luan, L. T., Dong, V. V., & Khanh, N. L. N. (2020). Examining Customers’ Continuance Intentions towards E-wallet Usage: The Emergence of Mobile Payment Acceptance in Vietnam. The Journal of Asian Finance, Economics and Business, 7(9), 505–516. https://doi.org/10.13106/jafeb.2020.vol7.no9.505
Priananda, I., Stevani, M., Sutanto, T. I., & Mariani, M. (2020). Grassroots Economy Towards Cashless Society: An Empirical Analysis Of Micro-Merchant’s Readiness in Continuing The Usage of Cashless Payment System. International Journal of Scientific & Technology Research, 9(3), 929–938.
Rafdinal, W., & Senalasari, W. (2021). Predicting the adoption of mobile payment applications during the COVID-19 pandemic. International Journal of Bank Marketing, 39(6), 984–1002. https://doi.org/10.1108/IJBM-10-2020-0532
Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality & Reliability Management, 38(4), 986–1004. https://doi.org/10.1108/IJQRM-03-2020-0074
Raman, P., & Aashish, K. (2021). To continue or not to continue: A structural analysis of antecedents of mobile payment systems in India. International Journal of Bank Marketing, 39(2), 242–271. https://doi.org/10.1108/ijbm-04-2020-0167
Ramos, F. L., Ferreira, J. B., Freitas, A. S. de, & Rodrigues, J. W. (2018). The Effect of Trust in the Intention to Use m-banking. BBR. Brazilian Business Review, 15(2), 175–191. https://doi.org/10.15728/bbr.2018.15.2.5
Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human - Computer Studies, 64(8), 683–696. https://doi.org/10.1016/j.ijhcs.2006.01.003
Rogers, E. M. (2003). Diffusion of Innovations (1962) (5o ed). Free Press (e-book).
Ryu, H.-S. (2018). What makes users willing or hesitant to use Fintech?: The moderating effect of user type. Industrial Management & Data Systems, 118(3), 541–569. https://doi.org/10.1108/IMDS-07-2017-0325
Santos, A. C. dos, Friedrich, M. P. A., & Hein, N. (2020). Determinantes da utilização de canais de serviços mobile banking para transações financeiras. Revista Gestão & Tecnologia, 20(1), 7–27. https://doi.org/10.20397/2177-6652/2020.v20i1.1691
Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33, e100283. https://doi.org/10.1016/j.elerap.2018.100823
Shin, S., & Lee, W. (2014). The Effects Of Technology Readiness And Technology Acceptance On Nfc Mobile Payment Services In Korea. Journal of Applied Business Research (JABR), 30(6), 1615–1626.
Silva, G. D. R., Jorge, R. R., Andrade, A. A., Junger, A. P., & Facó, J. F. B. (2018). Diffusion of Innovation in Banking Services: The impact of startups of services. Revista de Casos e Consultoria, 9(4), e941.
Sutto, G. (2021). 61,4% dos brasileiros usam Pix, que já soma 7 bilhões de transações; versão internacional está nos planos. InfoMoney. https://www.infomoney.com.br/minhas-financas/614-dos-brasileiros-usam-pix-que-ja-soma-7-bilhoes-de-transacoes-versao-internacional-esta-nos-planos/
Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’ technology readiness on technology acceptance. Information & Management, 44(2), 206–215.
Wei, M. F., Luh, Y. H., Huang, Y. H., & Chang, Y. C. (2021). Young Generation’s Mobile Payment Adoption Behavior: Analysis Based on an Extended UTAUT Model. Journal of Theoretical & Applied Electronic Commerce Research, 16(4), 618–637. https://doi.org/10.3390/jtaer16040037
Yan, M., Filieri, R., & Gorton, M. (2021). Continuance intention of online technologies: A systematic literature review. International Journal of Information Management, 58. https://doi.org/10.1016/j.ijinfomgt.2021.102315
Zhao, Y., Ni, Q., & Zhou, R. (2018). What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. International Journal of Information Management, 43, 342–350. https://doi.org/10.1016/j.ijinfomgt.2017.08.006
Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085–1091.
Zhou, T. (2014). Understanding the determinants of mobile payment continuance usage. Industrial Management & Data Systems, 114(6), 936–948.
Downloads
Published
Issue
Section
License
Copyright Statement
- The authors authorize the publication of the article in the journal.
- The opinions and ideas expressed in articles are the authors' sole responsibility.
- The authors guarantee that the article is not the result of plagiarism. Failure to do so may result in penalties for the situation.
- Editors can adjust the text and formatting to fit the article according to the journal's publication standards.
- The articles published are the property of CBR and are protected by copyright. However, authors can disclose and make their articles available for free.