Uma prova de conceito para o diagnóstico diferencial do transtorno do espectro autista usando aprendizado de máquina

Autores

DOI:

https://doi.org/10.51359/1679-1827.2024.263456

Palavras-chave:

aprendizagem de máquina, autismo, diagnóstico, eletroencefalograma

Resumo

Objetivo: O Transtorno do Espectro do Autismo (TEA) é um transtorno do neurodesenvolvimento caracterizado por déficits na comunicação social e na interação social. Atualmente, o diagnóstico do TEA é clínico. Neste contexto, este trabalho busca validar uma nova proposta de ferramenta para diagnóstico diferencial do TEA, de suporte à decisão do especialista, baseada na utilização de aprendizagem de máquina e sinais de EEG.

Método/abordagem: Utilizou-se o dataset 1 da base de dados Sheffield após processamento. Foram extraídos e selecionados atributos para avaliação utilizando 2 métodos: otimização por enxame de partículas e busca evolucionária. Os dois conjuntos foram divididos em treino (80%) e teste (20%), aplicou-se validação cruzada com 10 folds e, em seguida, avaliou-se 12 modelos de classificação distintos. Os experimentos foram repetidos 30 vezes.

Contribuições teóricas/práticas/sociais: O modelo com melhores resultados foi o SVM Rbf 0.5, com bons valores de acurácia (99,31%), índice Kappa (0,986), sensibilidade (0,994), especificidade (0,992) e área ROC (0,993).

Originalidade/relevância: Os resultados sugerem que a aprendizagem de máquina é uma ferramenta eficaz no diagnóstico do TEA.

Referências

Abdolzadegan, D., Moattar, M. H., & Ghoshuni, M. (2020). A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method. Biocybernetics and Biomedical Engineering, 40(1), 482-493.

Abuhaija, B., Alloubani, A., Almatari, M., Jaradat, G. M., Hemn, B. A., Abualkishik, A. M., & Alsmadi, M. K. (2023). A comprehensive study of machine learning for predicting cardiovascular disease using Weka and SPSS tools. International Journal of Electrical and Computer Engineering, 13(2), 1891.

Aditya, E., Situmorang, Z., Hayadi, B. H., & Zarlis, M. (2022, October). New student prediction using algorithm naive bayes and regression analysis in universitas potensi utama. In 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS) (pp. 1-6). IEEE.

Alves, C. L., Toutain, T. G. D. O., de Carvalho Aguiar, P., Pineda, A. M., Roster, K., Thielemann, C., ... & Rodrigues, F. A. (2023). Diagnosis of autism spectrum disorder based on functional brain networks and machine learning. Scientific Reports, 13(1), 8072.

American Psychiatric Association, D. S. M. T. F., & American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5, No. 5). Washington, DC: American psychiatric association.

Ari, B., Sobahi, N., Alçin, Ö. F., Sengur, A., & Acharya, U. R. (2022). Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals. Computers in Biology and Medicine, 143, 105311.

Ben‐Gal, I. (2008). Bayesian networks. Encyclopedia of statistics in quality and reliability.

Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.

Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC medicine, 9, 1-16.

Briouza, S., Gritli, H., Khraief, N., Belghith, S., & Singh, D. (2022, March). Classification of sEMG biomedical signals for upper-limb rehabilitation using the random forest method. In 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET) (pp. 161-166). IEEE.

Burbidge, R., Trotter, M., Buxton, B., & Holden, S. (2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers & chemistry, 26(1), 5-14.

Chawla, P., Rana, S. B., Kaur, H., & Singh, K. (2023). Computer-aided diagnosis of autism spectrum disorder from EEG signals using deep learning with FAWT and multiscale permutation entropy features. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 237(2), 282-294.

Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134-145.

Dias, C. C. V., Maciel, S. C., Silva, J. V. C. D., & Menezes, T. D. S. B. D. (2022). Social Representations About Autism by University Students. Psico-USF, 26, 631-643.

Dickinson, A., Jeste, S., & Milne, E. (2022). Electrophysiological signatures of brain aging in autism spectrum disorder. Cortex, 148, 139-151.

Farooq, M. S., Tehseen, R., Sabir, M., & Atal, Z. (2023). Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Scientific Reports, 13(1), 9605.

Friedman, N., & Koller, D. (2003). Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Machine learning, 50, 95-125.

Grossi, E., Valbusa, G., & Buscema, M. (2021). Detection of an autism EEG signature from only two EEG channels through features extraction and advanced machine learning analysis. Clinical EEG and Neuroscience, 52(5), 330-337.

Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., & Meneguzzi, F. (2018). Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: Clinical, 17, 16-23.

Hermawan, D. R., Fatihah, M. F. G., Kurniawati, L., & Helen, A. (2021, October). Comparative study of J48 decision tree classification algorithm, random tree, and random forest on in-vehicle CouponRecommendation data. In 2021 International conference on artificial intelligence and big data analytics (pp. 1-6). IEEE.

Khodatars, M., Shoeibi, A., Sadeghi, D., Ghaasemi, N., Jafari, M., Moridian, P., ... & Berk, M. (2021). Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Computers in biology and medicine, 139, 104949.

Kulage, K. M., Goldberg, J., Usseglio, J., Romero, D., Bain, J. M., & Smaldone, A. M. (2020). How has DSM-5 affected autism diagnosis? A 5-year follow-up systematic literature review and meta-analysis. Journal of autism and developmental disorders, 50, 2102-2127.

Kulage, K. M., Smaldone, A. M., & Cohn, E. G. (2014). How will DSM-5 affect autism diagnosis? A systematic literature review and meta-analysis. Journal of autism and developmental disorders, 44(8), 1918-1932.

Mellema, C. J., Nguyen, K. P., Treacher, A., & Montillo, A. (2022). Reproducible neuroimaging features for diagnosis of autism spectrum disorder with machine learning. Scientific reports, 12(1), 3057.

Merlini, D., & Rossini, M. (2021). Text categorization with WEKA: A survey. Machine Learning with Applications, 4, 100033.

Mohi-ud-Din, Q., & Jayanthy, A. K. (2021, March). Detection of Autism Spectrum Disorder from EEG signals using pre-trained deep convolution neural networks. In 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII) (pp. 1-5). IEEE.

Mun, N. L., & Jumadi, N. A. (2020). Statistical evaluation on the performance of Dyslexia risk screening system based fuzzy logic and WEKA. Int J Adv Sci Technol, 29(7), 638-49.

Niranjan, A., Nutan, D. H., Nitish, A., Shenoy, P. D., & Venugopal, K. R. (2018, April). ERCR TV: Ensemble of random committee and random tree for efficient anomaly classification using voting. In 2018 3rd international conference for convergence in technology (I2CT) (pp. 1-5). IEEE.

Oliveira, G. (2009). Autismo: diagnóstico e orientação. Parte I-Vigilância, rastreio e orientação nos cuidados primários de saúde. Acta Pediatr Port, 40(6), 278-87.

Ruping, S. (2001, November). Incremental learning with support vector machines. In Proceedings 2001 IEEE international conference on data mining (pp. 641-642). IEEE.

Shubho, S. A., Razib, M. R. H., Rudro, N. K., Saha, A. K., Khan, M. S. U., & Ahmed, S. (2019, December). Performance analysis of NB Tree, REP tree and random tree classifiers for credit card fraud data. In 2019 22nd International Conference on Computer and Information Technology (ICCIT) (pp. 1-6). IEEE.

Smelser, N. J., & Baltes, P. B. (Eds.). (2001). International encyclopedia of the social & behavioral sciences (Vol. 11). Amsterdam: Elsevier.

Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. V. (2016, August). A review of machine learning techniques using decision tree and support vector machine. In 2016 international conference on computing communication control and automation (ICCUBEA) (pp. 1-7). IEEE.

Srivastava, S. (2014). Weka: a tool for data preprocessing, classification, ensemble, clustering and association rule mining. International Journal of Computer Applications, 88(10).

Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental modelling. Ecological modelling, 203(3-4), 312-318.

Vijay, V., & Verma, P. (2023, January). Variants of Naïve Bayes Algorithm for Hate Speech Detection in Text Documents. In 2023 International Conference on Artificial Intelligence and Smart Communication (AISC) (pp. 18-21). IEEE.

Volkmar, F. R., & Reichow, B. (2013). Autism in DSM-5: progress and challenges. Molecular autism, 4, 1-6.

Zhang, H. (2004). The optimality of naive Bayes. Aa, 1(2), 3.

Zhou, Q., Lan, W., Zhou, Y., & Mo, G. (2020, November). Effectiveness evaluation of anti-bird devices based on random forest algorithm. In 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS) (pp. 743-748). IEEE.

Downloads

Publicado

2025-01-07

Edição

Seção

XII SBTI