Índices de vegetação do Sensoriamento Remoto para processamento de imagens na faixa do visível (RGB)

Jadson Freire-Silva, Yenê Medeiros Paz, Pedro Paulo Lima-Silva, João Antonio dos Santos Pereira, Ana Lúcia Bezerra Candeias

Abstract


É de extrema relevância entender o comportamento da vegetação para o planejamento e tomada de decisão no que se refere as áreas para plantio, uso adequado de recursos hídricos, irrigação e acompanhamento de dinâmicas vegetacionais, por exemplo. Neste sentido, o Sensoriamento Remoto (SR) vem sendo um relevante suporte para o monitoramento de ecossistemas, uma vez que se observa diversas pesquisas envolvendo a aplicação desta técnica através de diferentes algoritmos matemáticos intitulados índices. Os novos satélites, os veículos não tripulados e as câmeras de alta resolução que mantém produtos na faixa do visível (RGB) trazem novas perspectivas para a atuação do SR na vegetação, sobretudo na agricultura; assim, foi desenvolvido ao longo dos anos índices que possibilitasse a detecção da vegetação nas faixas espectrais visíveis e dessa forma, facilitando processos agropastoris, de agricultura de precisão e no barateamento do SR como um todo. Deste modo, este trabalho tem como objetivo uma revisão acerca dos índices de vegetação para o processamento na faixa RGB. A partir da revisão, verifica-se a procedência de quinze índices RGB, sendo concebidos por necessidades e equipamentos diversos, onde todos alcançam satisfatoriedade competida. Contata-se que os índices desenvolvidos melhoraram em significância as análises do SR, e que essas melhorias acarretaram novos aprendizados que contribuíram diretamente para o estudo dos ecossistemas, especialmente os ambientes vegetacionais. O dinamismo do SR o faz chamariz de inovação, em que, através das exigências e de demandas atuais, novos índices poderão ser criados contribuindo na manutenção e provimento de atividades sociais, econômicas e ecológicas.

References


Alexakis, D.D.; Grillakis, M.G.; Koutroulis, A.G.; Agapiou, A.; Themistocleous, K.; Tsanis, I.K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; Retalis, A.; Tymvios, F.; Hadjimitsis, D.G. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: the case study of Yialias basin in Cyprus.Nat. Hazards Earth Syst. Sci., v. 14, p. 413–426, 2014.

Alves, D.S.; Skole, D.L. Characterizing land cover dynamics using multi-temporal imagery. Int. Remote Sensing, v. 17, n. 4, p. 835-839, 1996.

Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens, v. 5, 949-981, 2013.

Barbosa, R.V.R.; Vecchia, F.A.S. Estudos de ilha de calor urbana por meio de imagens do Landsat 7 ETM+: Estudo de caso em São Carlos (SP). Revista Minerva, v. 6, n. 3, p. 273-278, 2009.

Batten, G.D. Plant analysis using near infrared reflectance spectroscopy: The potential and the limitations. Australian Journal of Experimental Agriculture, v. 38, n.7, p. 697–706, 1997.

Bastiaanssen, W. Remote sensing in water resources management: the state of the art. IX ed. Colombo, Sri Lanka: International Water Management Institute (IWMI), 1998.

Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management, v. 46, p. 137-155, 2000.

Bolch, T. Climate change and glacier retreat in northern Tien Shan (Kazakhstan/Kyrgyzstan) using remote sensing data. Global and Planetary Change, v. 56, p. 1–12, 2007.

Borges, M.H.; Pfeifer, R.M.; Demattê, J.A.M. Evolução e mapeamento do uso da terra, através de imagens aerofotogramétricas e orbitais em santa bárbara d'oeste (SP). Sce. Agric., v. 50, n. 3, p. 365-371, 1993.

Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis, CRC Press, 2007.

Camargo-Neto, J. A Combined Statistical—Soft Computing Approach for Classification and Mapping Weed Species in Minimum Tillage Systems. University of Nebraska, Lincoln, NE, 2004.

Castro, A.I.; Ehsani, R.; Ploetz, R.C.; Crane, J.H.; Buchanon, S. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging. PLoS One, v. 10, n. 4, 2015.

Chang, L.; Peng-Sen, S.; Shi-Rong, L. A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, v. 40, p. 80–91, 2016.

Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, v. 104, n. 2, p. 133–146, 2006.

Cui, W.; Zheng, Z.; Zhou, Q.; Huang, J.; Yuan, Y. Application of a parallel spectral–spatial convolution neural network in object oriented remote sensing land use classification. Remote Sensing Letters, v. 9, n.4, p. 334-342, 2018.

Cunha, J.E.B.L., et al. Dinâmica da cobertura vegetal para a Bacia de São João do Rio do Peixe, PB, utilizando-se sensoriamento remoto. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 16, p. 539 548, 2012.

Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K; Siddiqui, A.R. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). The Egyptian Journal of Remote Sensing and Space Sciences, v. 18, p. 53-63, 2015.

EEFLUX - Google Earth Engine Evapotranspiration Flux. What is EEFlux? International Workshop on Evapotranspiration Mapping– Sept. 15, 2015.

Epiphanio, J.C.N et al. Índices de vegetação no sensoriamento remoto da cultura do feijão. Pesq. agropec bras, v. 31, n. 6, p. 445-454, 1996.

Epiphanio, J.C.N.; Vitorello, I. Áreas irrigadas: monitoramento por sensoriamento remoto. Revista Irrigação e Tecnologia Moderna, v, 14, p. 20, 1983.

Escadafal, R.; Huete, A. Étude des propriétés spectrales des sols arides appliquée à l’am élioration des indices de végétation obtenus par télédétection. Comptes Rendus de l’Academie des Sciences, v. 312, p. 1385–1391, 1991.

Fallati, L., Savini, A., Sterlacchini, S., Galli, P. Land use and land cover (LULC) of the Republic of the Maldives: first national map and LULC change analysis using remote-sensing data. Environmental Monitoring and Assessment, v. 189, n. 8, p. 417, 2017.

Figueiredo, D. Conceitos Básicos do Sensoriamento Remoto. 2005. Disponível em: < http://www.conab.gov.br/conabweb/download/SIGABRASIL/manuais/conceitos_sm.pdf >. Acesso em: 01/03/2018.

Federer, C.A.; Tanner, C.B. Spectral dis-tribution of light in the forest. Ecology, v. 47, p. 555-560, 1966.

Galvíncio, J. D. et al. LAI Improved to Dry Forest in Semiarid of the Brazil. International Journal of Remote Sensing Application, v. 3, n. 4, p. 193, 2013.

Gao, B.C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, v. 58, p. 257–266, 1996.

Gitelson, A.; Kaufman, Y.; Merzlyak, M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, v. 58, p. 289–298, 1996.

Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, v. 80, p. 76–87, 2002.

Goergen, L.C.G et al. Distinção de espécies de eucalipto de diferentes idades por meio de imagens TM/Landsat 5. Pesq. agropec. Bras, v. 51, p. 53-60, 2016.

Grecchi, R.C. et al. Análise espaço-temporal da conversão do cerrado em áreas agrícolas na região de sapezal, mato grosso, entre os anos de 1981 e 2011. Revista Brasileira de Cartografia, v. 68, p. 91-107, 2016.

Guerrero, J.M.; Pajares, G.; Montalvo, M.; Romeo, J.; Guijarro, M. Support vector machines for crop/weeds identification in maize fields. Exp. Syst. Appl., v. 39, p. 11149–11155, 2012.

Ha, L.T.; Bastiaanssen, W.G.M.; Griensven, A.; Dijk, A.I.J.M.; Senay, G.B. SWAT-CUP for Calibration of Spatially Distributed Hydrological Processes and Ecosystem Services in a Vietnamese River Basin Using Remote Sensing. Hydrol. Earth Syst. Sci. Discuss (Manuscript under review for journal Hydrol. Earth Syst. Sci.), 2017.

Hague, T., Tillett, N.D., Wheeler, H. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric., v. 7, p. 21–32, 2006.

Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; Anderson, M.C.; Sadeghi, A.M.; Hain, C.R; Sharifi, A. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology, v. 556, p. 39–49, 2018.

Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, v. 25, p. 295–309, 1988.

Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal, v. 103, p. 1090–1099, 2011.

Iglesias, M.E.D.; Gómez, A.M.M. Análisis documental y de información: dos componentes de un mismo proceso. ACIMED, v. 12, n. 2, p. 1-5, 2004

Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Jordan Source: Ecology, v. 50, n. 4, p. 663-666, 1969.

Kataoka, T.; Kaneko, T.; Okamoto, H.; Hata, S. Crop growth estimation system using machine vision. In: 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings, b1079–b1083, 2003.

Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, v. 30, p. 261–270, 1992.

Khan, A.A.; Muhammad, J.; Khan, G.D.; Ijaz, M.; Adnan, M. Quantitative Analysis of Watershed Hydrology for Kandar Dam (Kohat) using Remote Sensing and Geographic Information System (GIS) Techniques. Pakistan Journal of Meteorology, v. 12, n. 24, 2016.

Li, Y.; Zhou, Q.; Zhou, J.; Zhang, G.: Chen, C.; Wang, J. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecol. Modell, v. 291, p. 15–27, 2014.

Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, v. 16, p. 65–70, 2001.

Machado, C.C.C. Alterações na superfície do Parque Nacional do Catimbau (PE-Brasil): consolidação dos aspectos biofísicos na definição dos indicadores ambientais do bioma Caatinga. Tese (Doutorado), Universidade Federal de Pernambuco, 2014.

Marchant, J.A.; Onyango, C.M. Shadow-invariant classification for scenes illuminated by daylight. J Opt Soc Am A, v. 17, n. 11, p. 1952–1961, 2002.

Mcfeeters, S.K. The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v. 17, p. 1425–1432, 1996.

Meneses, P.R.; Almeida, T. Introdução ao processamento de imagens de sensoriamento remoto. Universidade de Brasília, Brasília, 2012.

Menke, A.B. et al. Análise das mudanças do uso agrícola da terra a partir de dados de sensoriamento remoto multitemporal no Município de Luís Eduardo Magalhães (BA – Brasil). Sociedade & Natureza, v. 21, n. 3, p. 315-326, 2009.

Meyer, G.E., Camargo-Neto, J. Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, v. 63, n. 2, p. 282-293, 2008.

Meyer, G.E., Hindman, T.W., Lakshmi, K. Machine vision detection parameters for plant species identification. In: Meyer, G.E., DeShazer, J.A. (Eds.), Precision Agriculture and Biological Quality, 3543, p. 327–335, 1998.

Miranda, R.Q. Avaliação integrada da variação espacial e temporal do balanço hídrico na Caatinga. Tese (Doutorado) – Universidade Federal de Pernambuco. Programa de Pós-Graduação em Desenvolvimento e Meio Ambiente, Recife, 2017.

Mohan, M., Kandya, A. Impact of urbanization and land-use/land-cover change on diurnal temperature range: A case study of tropical urban airshed of India using remote sensing data. Science of the Total Environment, v. 506-507, p. 453–465, 2015.

Moraes, M.V.A.R. et al. Variações temporais da linha de costa do município de Acaraú – Ceará – Brasil. Revista Brasileira de Geografia Física, v. 8, n. 4, p. 981-989, 2015.

Mulla, D.J. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosystems Engineering, v. 114, n. 4, p. 358–371, 2013.

Picón-Feliciano, A. J.; Vásquez, R.; González, J.; Luvall, J.; Rickman, D. Use of Remote Sensing Observations to Study the Urban Climate on Tropical Coastal Cities. Revista Umbral, v.1, p. 218-232, 2009.

Pohl, E.; Gloaguen, R.; Seiler, R.. Remote Sensing Based Assessment of the Variability of Winter and Summer Precipitation in the Pamirs and their Effects on Hydrology and Hazards using Harmonic Time Series Analysis. Remote Sens., in review, 2015.

Ponti, M. Segmentation of Low-Cost Remote Sensing Images Combining Vegetation Indices and Mean Shift. Geoscience and Remote Sensing Letters, v. 10, p. 67-70, 2013.

Rawat, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci, v. 18, p. 77–84, 2015.

Rokhmana, C. A. The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia. Procedia Environmental Sciences, v. 24, p. 245 – 253, 2015.

Rosa, H.J.A. et al., Sugarcane response to nitrogen rates, measured by a canopy reflectance sensor. Pesq. agropec. Bras, v. 50, n. 9, p. 840-848, 2015.

Rouse, J.W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. TexaS A&M University Remote Sensing Center College Station Texas 77843. Type I Progress Report-Number 7, 1974.

Rouse, J.W., Haas, R.H., Schell, J.A., DEERING, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden, S.C., Mercanti, E.P., Becker, M. (Eds.), Third Earth Resources Technology Satellite-1 Symposium, Vol. 1: Technical Presentations, NASA SP-351. National Aeronautics and Space Administration, Washington, DC, pp. 309–317, 1974.

Santos, A.R. Apostila de Sensoriamento Remoto. Universidade Federal do Espírito Santo - UFES. Centro de Ciências Agrárias - CCA - Departamento de Engenharia Rural. Porto Alegre, Espírito Santo, p. 1 - 87, 2013.

Silva, B.B. et al. Evapotranspiração e estimativa da água consumida em perímetro irrigado do Semiárido brasileiro por sensoriamento remoto. Pesq. agropec. Bras, v. 47, n. 9, p. 1218-1226, 2012.

Silva, J.F., Ferreira, P.S., Gomes, V.P., Silva, E. R.A.C., Galvíncio, J.D. Climatic potential of pineapple fruit growing mapping in the micro region of Araripina - PE. Revista Brasileira de Geografia Física, v. 8, p. 196-210, 2015.

Srestasathiern, P.; Rakwatin, P. Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery. Remote Sensm v.6, n. 10, p. 9749-9774, 2014.

Steele-Dunne, S.; Mcnairn, H.; Monsivais-Huertero, A.: Judge, J.: Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Accepted, 2017.

Stow, D. A., Hope, A., Mcguire, D., Verbyla, D., Gamon, J. A., Huemmrich, R., et al. Remote sensing of vegetation and land-cover change in arctic tundra ecosystems. Remote Sensing of Environment, v. 89, p. 281−308, 2004.

Torres-Sánchez, J, J. M.; Peña, A.I.C.; Lopez- Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, v. 103, p. 104–113, 2014.

Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, v. 8, p. 127–150, 1979.

Tucker, C.J.; Maxwell, E.L. Sensor Design for Monitoring Vegetation Canopies. Photogrammetric Engineering and Remote Sensing, v. 42, n.11, p. 1399-1410, 1976.

Wang, S. The Quantitative Research on Dynamic Changes between flood and Vegetation in Tarim river valley. Thesis (PhD), Beijing Normal University, 2007.

Wang, X.; Wang, M.; Wang, S.; Wu, Y. Extraction of vegetation information from visible unmanned aerial vehicle images. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, v. 31, n. 5, p. 152–159, 2015.

Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, v. 64, p. 273–284, 2002.

Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue and Lighting Conditions. Trans ASAE, v. 38, p. 259–269, 1995.

Xiao, J.Y.; Shen, Y.J.; Ge, J.F.; Tateishi, R.; Tang, C.Y.; Liang, Y.Q. et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan, v. 75, p. 69–80, 2006.

Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, v. 27, n. 14, p. 3025–3033, 2006.

Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors. In press. Article ID 1353691, v. 17, 2017.

Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Change, v. 3, p. 875–883, 2013.

Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, v. 24, p. 583–594, 2003.




DOI: https://doi.org/10.29150/jhrs.v9.4.p228-239

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:

 

Google Scholar

 

Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202