Downscale of future climate change scenarios applied to Recife-PE

Rafaela Lisboa Costa, Heliofábio Barros Gomes, Fabrício Daniel dos Santos Silva, Rodrigo Lins da Rocha Júnior

Abstract


The objective of this work was to analyze and compare results from two generations of global climate models (GCMs) simulations for the city of Recife-PE: CMIP3 and CMIP5. Differences and similarities in historical and future climate simulations are presented for four GCMs using CMIP3 scenarios A1B and A2 and for seven CMIP5 scenarios RCP4.5 and RCP8.5. The scale reduction technique applied to GCMs scenarios is statistical downscaling, employing the same set of large-scale atmospheric variables as predictors for both sets of scenarios, differing only in the type of reanalysis data used to characterize surface variables precipitation, maximum and minimum temperatures. For CMIP3 scenarios the simulated historical climate is 1961-1990 and CMIP5 is 1979-2000, and the validation period is ten years, 1991-2000 for CMIP3 and 2001-2010 for CMIP5. However, for both the future period analyzed is 2021-2050 and 2051-2080. Validation metrics indicated superior results from the historical simulations of CMIP5 over those of CMIP3 for precipitation and minimum and similar temperatures for maximum temperatures. For the future, both CMIP3 and CMIP5 scenarios indicate reduced precipitation and increased temperatures. The potencial evapotranspiration was calculated, projected to increase in scenarios A1B and A2 of CMIP3 and with behavior similar to that observed historically in scenarios RCP4.5 and 8.5.


Keywords


precipitation; temperature; potential evapotranspiration; statistical downscaling

Full Text:

PDF

References


ALLEN, R.G.; L. S. PEREIRA; D. RAES Y SMITH, M. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56, 1998.

ARORA, V. K. et al. The effect of terrestrial photosynthesis down-regulation on the 20th century carbon budget simulated with the CCCma Earth System Model, Journal of Climate, v. 22, p. 6066-6088, 2009.

ARORA, V. K.; BOER, G. J. Uncertainties in the 20th century carbon budget associated with land use change, Global Change Biology, v. 16(12), p. 3327.3348, 2010.

BELLOUIN N.; BOUCHER, O.; HAYWOOD, J.; JOHNSON, C.; JONES, A.; RAE, J.; WOODWARD, S. Improved representation of aerosols for HadGEM2. Meteorological Office Hadley Centre, Technical Note 73, March 2007.

BENTSEN, M.; BETHKE, I.; DEBERNARD, J. B.; IVERSEN, T.; KIRKEVÅG, A.; SELAND, Ø.; DRANGE, H.; ROELANDT, C.; SEIERSTAD, I. A.; HOOSE, C.; KRISTJÁNSSON, J. E. The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geoscientific Model Development, v. 6, p. 687–720, 2012.

BORGES, M. A. L.; SILVA, H. P.; CALDAS, K. F. R. Mapeamento de Pernambuco frente aos desastres naturais - Uma análise socioeconômica. ACTA Geográfica, Boa Vista, Ed. Esp. V CBEAGT, p.57-72, 2016.

CARVALHO, J. R. P.; NAKAI, A. M.; MONTEIRO, J. E. B. A. Spatio-Temporal Modeling of Data Imputation for Daily Rainfall Series in Homogeneous Zones. Revista Brasileira de Meteorologia, v. 31, n. 2, p. 196-201, 2016.

CLARKE, L. E.; EDMONDS, J. A.; JACOBY, H. D.; PITCHER, H.; REILLY, J. M.; RICHELS, R. Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington DC, 2007.

COFIÑO, A. S.; SAN-MARTIN, D.; GUTIÉRREZ, J.M. A web portal for regional projection of weather forecast using GRID middleware. Santander Meteorology Group, 2007.

COLLINS, W. J.; BELLOUIN, N.; DOUTRIAUX-BOUCHER, M.; GEDNEY, N.; HINTON, T. C.; JONES, D.; LIDDICOAT, S.; MARTIN, G.; OCONNOR, F.; RAE, J.; SENIOR, C.; TOTTERDELL, I.; WOODWARD, S. Evaluation of the HadGEM2 model. Meteorological Office Hadley Centre, Technical Note 74, 2008.

DEE, D. P.; UPPALA, S. M.; SIMMONS, A. J.; BERRISFORD, P.; POLI, P.; KOBAYASHI, S.; ANDRAE, U.; BALMASEDA, M. A.; BALSAMO, G.; BAUER, P.; BECHTOLD, P.; BELJAARS, A. C. M.; van de BERG, L.; BIDLOT, J.; BORMANN, N.; DELSOL, C.; DRAGANI, R.; FUENTES, M.; GEER, A. J.; HAIMBERGER, L.; HEALY, S. B.; HERSBACH, H.; HOLM, E. V.; ISAKSEN, L.; KALLBERG, P.; KOHLER, M.; MATRICARDI, M.; McNALLY, A. P.; MONGE-SANZ, B. M.; MORCRETTE, J. J.; PARK, B. K.; PEUBEY, C.; ROSNAY, P.; TAVOLATO, C.; THEPAUT, J. N.; VITART, F. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, v. 137, p. 553–597, 2011.

DUFRESNE, J. L.; FOUJOLS, M. A.; DENVIL, S.; CAUBEL, A.; MARTI, O.; AUMONT, O.; BALKANSKI, Y.; BEKKI, S.; BELLENGER, H.; BENSHILA, R.; BONY, S.; BOPP, L.; BRACONNOT, P.; BROCKMANN, P.; CADULE, P.; CHERUY, F.; CODRON, F.; COZIC, A.; CUGNET, D.; DE NOBLET, N.; DUVEL, J. P.; ETHE, C.;´FAIRHEAD, L.; FICHEFET, T.; FLAVONI, S.; FRIEDLINGSTEIN, P.; GRANDPEIX, J. Y.; GUEZ, L.; GUILYARDI, E.; HAUGLUSTAINE, D.; HOURDIN, F.; IDELKADI, A.; GHATTAS, J.; JOUSSAUME, S.; KAGEYAMA, M.; KRINNER, G.; LABETOULLE, S.; LAHELLEC, A.; LEFEBVRE, M. P.; LEFEVRE, F.; LEVY, C.; LI, Z. X.; LLOYD, J.; LOTT, F.; MADEC, G.; MANCIP, M.; MARCHAND, M.; MASSON, S.; MEURDESOIF, Y.; MIGNOT, J.; MUSAT, I.; PAROUTY, S.; POLCHER, J.; RIO, C.; SCHULZ, M.; SWINGEDOUW, D.; SZOPA, S.; TALANDIER, C.; TERRAY, P.; VIOVY, N.; VUICHARD, N. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynamics, v. 40, p. 2123–2165, 2013.

DUNNE, J. P.; JOHN, J. G.; ADCROFT, A. J.; GRIFFIES, S. M.; HALLBERG, R. W.; SHEVLIAKOVA, E.; STOUFFER, R. J.; COOKE, W.; DUNNE, K. A.; HARRISON, M. J.; KRASTING, J. P.; MALYSHEV, S. L.; MILLY, P. C. D.; PHILLIPPS, P. J.; SENTMAN, L. T.; SAMUELS, B. L.; SPELMAN, M. J.; WINTON, M.; WITTENBERG, A. T.; ZADEH, N. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, v. 25, p. 6646-665, 2012.

DUNNE, J. P.; JOHN, J. G.; SHEVLIAKOVA, E.; STOUFFER, R. J.; KRASTING, J. P.; MALYSHEV, S. L.; MILLY, P. C. D.; SENTMAN, L. T.; ADCROFT, A. J.; COOKE, W.; DUNNE, K. A.; GRIFFIES, S. M.; HALLBERG, R. W.; HARRISON, M. J.; LEVY, H.; WITTENBERG, R. W.; PHILLIPS, P. J.; ZADEH, N. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. Journal of Climate, v. 26, p. 2247-2267, 2013.

FUJINO, J.; NAIR, R.; KAINUMA, M.; MASUI, T.; MATSUOKA, Y. Multigas mitigation analysis on stabilization scenarios using aim global model. The Energy Journal, Special issue #3:343–354, 2006.

GIORGETTA, M. A.; JUNGCLAUS, J.; REICK, C. H.; LEGUTKE, S.; BADER, J.; BOTTINGER, M.; BROVKIN, V.; CRUEGER, T.; ESCH, M.; FIEG, K.; GLUSNAK, K.; GAYLER, V.; HAAK, H.; HOLLWEG, H-D.; ILYINA, T.; KINNE, S.; KORNBLUEH, L.; MATEI, D.; MAURITSEN, T.; MIKOLAJEWICZ, U.; MUELLER, W.; NOTZ, D.; PITHAN, F.; RADDATZ, T.; RAST, S.; REDLER, R.; ROECHNER, E.; SCHMIDT, H.; SCHNUR, R.; SEGSCHNEIDER, J.; SIX, K. D.; STOCKHAUSE, M.;TIMMRECK, C.; WEGNER, J.; WIDMANN, H.; WIENERS, K-H.; CLAUSSEN, M.; MAROTZKE, J.; STEVENS, B. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESMsimulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, VOL. 5, 572–597, doi:10.1002/jame.20038, 2013.

GUIMARÃES, S. O; COSTA, A. A; JUNIOR, F. C. V; S; SILVA, E. M; SALES, D. C; JUNIOR, L. M. A; SOUZA, S. G. Projeções de mudanças climáticas sobre o nordeste brasileiro dos modelos do CMIP5 e do CORDEX. Revista Brasileira de Meteorologia, v.31, n.3, 337-365, 2016.

GUO, C.; BENTSEN, M.; BETHKE, I.; ILICAK, M.; TJIPUTRA, J.; TONIAZZO, T.; SCHWINGER, J.; OTTERA, O.H. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geoscientific Model Development, v. 12, p. 343–362, 2019.

GUTIÉRREZ, J. M.; SAN-MARTIN, D.; BRANDS, S.; MANZANAS, R.; HERRERA, S. Reassessing statistical downscaling techniques for their robust application under climate change conditions. Journal of Climate, v. 26, p. 171-188, 2013.

HARTMANN, D. L.; KLEIN-TANK, A. M. G.; RUSTICUCCI, M.; ALEXANDER, L. V.; BRONNIMANN, S.; CHARABI, Y.; DENTENER, F. J.; DLUGOKENCKY, E. J.; EASTERLING, D. R.; KAPLAN, A.; SODEN, B. J.; THORNE, P. W.; WILD, M.; ZHAI, P. M. Observations: Atmosphere and Surface. In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, p. 159-254, 2013.

HIJIOKA, Y.; MATSUOKA, Y.; NISHIMOTO, H.; MASUI, T.; KAINUMA, M. Global GHG emission scenarios under GHG concentration stabilization targets. Journal of Global Environment Engineering, v. 13, p. 97–108, 2008.

HARGREAVES, G. H.; SAMANI, Z. A. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, v. 1(2), p. 96-99, 1985.

IVERSEN, T.; BENTSEN, M.; BETHKE, I.; DEBERNARD, J. B.; KIRKEVÅG, A.; SELAND, Ø.; DRANGE, H.; KRISTJANSSON, J. E.; MEDHAUG, I.; SAND, M.; SEIERSTAD, I. A. The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections, Geoscientific Model Development, v. 6, p. 389–415, 2013.

JONES, R. G.; NOGUER, M.; HASSEL, D. C.; HUDSON, D.; WILSON, S. S.; JENKINS, G. J.; MITCHELL, J. F. B. Generating high resolution climate change scenarios using PRECIS. Meteorological Office Hadley Centre. Exeter, UK, 40p. 2004.

JUNGCLAUS, J. H.; FISCHER, N.; HAAK, H.; LOHMANN, K.; MAROTZKE, J.; MATEI, D.; MIKOLAJEWICZ, U.; NOTZ, D.; VON STORCH, J. S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI‐Earth system model. Journal of Advances in Modeling Earth Systems, v. 5, p. 422–446, doi:10.1002/jame.20023, 2013.

MARENGO, J. A.; JONES, R.; ALVES, L. M.; VALVERDE, M. C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v. 29, p. 2241 -2255, 2009.

MARSLAND, S. J.; HAAK, H.; JUNGCLAUS, J. H.; LATIF, M.; ROESKE, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, v. 5, p. 91-127, 2003.

MULLER, W. A.; JUNGCLAUS, J. H.; MAURITSEN, T.; BAEHR, J.; BITTNER, M.; BUDICH, R.; BUNZEL, F.; ESCH, M.; GHOSH, R.; HAAK, H.; ILYINA, T.; KLEINE, T.; KORNBLUEH, L.; LI, H.; MODALI, K.; DOTZ, D.; POHLMANN, H.; ROECKNER, E.; STEMMLER, I.; TIAN, F.; MAROTZKE, J. A Higher-resolution Version of the Max PlanckInstitute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10.1029/2017MS001217, p. 1383-1413, 2018.

NAKICENOVIC, N.; ALCAMO, J.; DAVIS, G.; DE VRIES, B.; FENHANN, J.; GAFFIN, S.; GREGORY, K.; GRÜBLER, A.; JUNG, T. Y.; KRAM, T.; LA ROVERE, E. L.; MICHAELIS, L.; MORI, S.; MORITA, T.; PEPPER, W.; PITCHER, H; PRICE, L.; RAIHI, K.; ROEHRL, A.; ROGNER, H.H.; SANKIVSKI, A.; SCHLESINGER, M.; SHUKLA, P.; SMITH, S.; SWART, R.; VAN ROOIJEN, S;; VICTOR, N.; DADI, Z. IPCC: Special Reporto n Emissions Scenarios, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2000.

NOZAWA, T.; NAGASHIMA, T.; OGURA, T.; YOKOHATA, T.; OKADA, N.; SHIOGAMA, H. Climate change simulations with a coupled ocean-atmosphere GCM called the Model for Interdisciplinary Research on Climate: MIROC, CGER Supercomput. Monogr. Rep., 12, Cent. For Global Environ. Res., Natl. Inst. for Environ. Stud., Tsukuba, Japan, 2007.

PREFEITURA DO RECIFE. A Cidade do Recife: Perfil e História. Disponível em: ; Acesso em 08 de julho de 2008.

RADDATZ T. J.; REICK, C. H.; KNORR , W.; KATTGE, J.; ROECKNER, E.; SCHNUR, R.; SCHNITZLER, K.-G.; WETZEL, P.; JUNGCLAUS, J. Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty first century? Climate Dynamics, v. 29, p. 565-574, 2007.

RIAHI, K.; GRÜBLER, A.; NAKICENOVIC, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change, v. 74, p. 887–935, 2007.

RIAHI, K.; KREY, V.; RAO, S.; CHIRKOV, V.; FISCHER, G.; KOLP, P.; KINDERMANN, G.; NAKICENOVIC, N.; RAFAI, P. RCP-8.5: exploring the consequence of high emission trajectories. Climatic Change. doi: 10.1007/s10584-011-0149-y, 2011.

SALAS-MÉLIA, D. A global coupled sea ice-ocean model. Ocean Modelling, v. 4, p. 137-172, 2002.

SALAS-MÉLIA, D.; CHAUVIN, F.; DÉQUÉ, M.; DOUVILLE, H.; GUEREMY, J. F.; PLANTON, S.; ROYER, J. F.; TYTECA, S. Description and validation of the CNRM-CM3 global coupled model, CNRM Tech. Rep. 103, 2005.

SALES, D. C; COSTA, A. A; SILVA, E. M; JUNIOR, F. C. V; CAVALCANTE, A. M. B; MEDEIROS, S. S; MARIN, A. M. P; GUIMARÃES, S. O; JUNIOR, L. M. A; PEREIRA, J. M. R. Projeções de mudanças na precipitação e temperatura no nordeste brasileiro utilizando técnica de downscaling dinâmico. Revista Brasileira de Meteorologia, v. 30, n.4, 2015.

SALVIANO, M. F; GROPPO, J. D.; PELEGRINO, G. Q. Análise de tendências em dados de precipitação e temperatura no Brasil. Revista Brasileira de Meteorologia, v.31, n.1, p.64-73, 2016.

SAMANI , Z. Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data. Journal of Irrigation and Drainage Engineering, v. 126, No. 4, p. 265-267, 2000.

SILVA, V. B. S.; KOUSKY, V. E.; SILVA, F. D. S.; SALVADOR, M. A.; ARAVEQUIA, J. A. The 2012 severe drought over Northeast Brazil. Bulletin of the American Meteorological Society, v. 94, p. 162, 2013.

SILVA, F. D. S.; RAMOS, R. M. ; COSTA, R. L. ; AZEVEDO, P. V. . Sistema de Controle de Qualidade para Dados Diários de Variáveis Meteorológicas. Revista Brasileira de Geografia Física, v. 7, p. 827-836, 2014.

SMITH, S. J.; WIGLEY, T. M. L. MultiGas forcing stabilization with minicam. The Energy Journal, Special issue #3, p. 373–392, 2006.

SOUZA, W. M.; AZEVEDO, P. V.; ASSIS, J. M. O.; SOBRAL, M. C. Áreas de risco mais vulneráveis aos desastres decorrentes das chuvas em Recife-PE. Revista Brasileira de Ciências Ambientais, v.34, p. 79-94, 2014.

SRES- Esmissions Scenarios: A Special Reporto f IPCC Working Group III. Published for the Intergovernmental Panel on Climate Change, ISBN: 92-9169-113-5, 2010.

SUN, L.; KUNKEL, K.E.; STEVENS, L.E.; BUDDENBERG, A.; DOBSON, J.G.; EASTERLING, D.R. Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United States: Differences, Similarities, and Implications for the U.S. National Climate Assessment, NOAA Technical Report NESDIS 144, 111 pp. doi:10.7289/V5RB72KG, 2015.

TAYLOR, K. E.; STOUFFER, R. J.; MEEHL, G. A. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, DOI:10.1175/BAMS-D-11-00094.1, 2012.

VANNITSEM, S.; CHOMÉ, F. One-way nested regional climate simulations and domain size. Journal of Climate, v.18, p.229-233, 2005.

van VUUREN, D. P.; EICKHOUT, B.; LUCAS, P. L.; DEN ELZEN, M. G. J. Long-term multi-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework. Energy Journal, v. 27, p. 201–233, 2006.

van VUUREN, D. P.; DEN ELZEN, M. G. J.; LUCAS, P. L.; STRENGERS, B. J.; VAN RUIJVEN, B.; WONINK, S.; van HOUDT, R. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change, v. 81, p. 119–159, 2007a.

van VUUREN, D. P.; LUCAS, P. L.; HILDERINK, H. Downscaling drivers of global environmental change: enabling use of global SRES scenarios at the national and grid levels. Global Environmental Change, v. 17, p. 114–130, 2007b.

van VUUREN, D. P.; EDMONDS, J.; KAINUMA, M.; RIAHI, K.; THOMSON, A.; HIBBARD, K.; HURTT, G. C.; KRAM, T.; KREY, V.; LAMARQUE, J. F.; MASUI, T.; MEINSHAUSEN, M.; NAKICENOVIC, N.; SMITH, S. J.; ROSE, S. K. The representative concentration pathways: an overview. Climatic Change. DOI 10.1007/s10584-011-0148-z, 2011.

VOLDOIRE, A., E.; SANCHEZ-GOMEZ, D.; SALAS Y MÉLIA, B.; DECHARME, C.; CASSOU, S.; SÉNÉSI, S.; VALCKE, I.; BEAU, A.; ALIAS, M.; CHEVALLIER, M.; DÉQUÉ, J.; DESHAYES, H.; DOUVILLE, E.; FERNANDEZ, G.; MADEC, E.; MAISONNAVE, M. P.; MOINE, S.; PLANTON, D.; SAINT-MARTIN, S.; SZOPA, S.; TYTECA, R.; ALKAMA, S.; BELAMARI, A.; BRAUN, L.; COQUART, F.; CHAUVIN, F. The CNRM-CM5.1 global climate model: description and basic evaluation, Climate Dynamics, v. 40(9), p. 2091-2121, 2011.

WATANABE, S.; HAJIMA, T.; SUDO, K.; NAGASHIMA, T.; TAKEMURA, T.; OKAJIMA, H.; NOZAWA, T.; KAWASE, H.; ABE, M.; YOKOHATA, T.; ISE, T.; SATO, H.; KATO, E.; TAKATA, K.; EMORI, S.; KAWAMIYA, M. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, v. 4, p. 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.

WILBY, R. L.; DAWSON, C. W. The Statistical DownScaling Model (SDSM): Insights from one decade of application. International Journal of Climatology, v. 33, p. 1707-1719, 2013.

WISE, M.; CALVIN, K.; THOMSON, A.; CLARKE, L.; BOND-LAMBERTY, B.; SANDS, R.; SMITH, S. J.; JANETOS, A.; EDMONDS, J. Implications of limiting CO2 concentrations for land use and energy. Science, v. 324, p. 1183–1186, 2009.

ZAHARIEV, K.; CHRISTIAN, J. R.; DENMAN, K. L. Preindustrial, historical, and fertilization simulations using a global ocean carbon model with new parameterizations of iron limitation, calcification, and N2 fixation. Progress in Oceanography, v. 77, p. 56-82, 2008.




DOI: https://doi.org/10.29150/jhrs.v9.6.p361-372

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Indexadores / Base de Dados:

 

Google Scholar

 

Journal of Hyperspectral Remote Sensing - eISSN: 2237-2202