Changes in vegetation cover and carbon stock in central South America: an analysis using field data and remote sensing

Authors

DOI:

https://doi.org/10.29150/jhrs.v12.4.p138-153

Keywords:

Cerrado, Chaco, carbon emissions, dry forests, Pantanal, remote sensing

Abstract

A região central da América do Sul, onde está localizada a Bacia do Alto Paraguai (UPRB), é considerada um dos maiores reservatórios de carbono acima do solo do planeta. No entanto, a superfície ocupada por essas formações vem diminuindo consideravelmente o que requer ações estratégicas para preservar esses recursos. Nesse contexto, o presente estudo teve como objetivo estimar o estoque de carbono em formações florestais e savânicas da UPRB, analisando as variações ocorridas nos anos de 2013 e 2018, utilizando dados de campo, sensoriamento remoto e geoprocessamento. A abordagem proposta para a área trinacional da bacia é inédita e possibilitou quantificar o carbono na vegetação da UPRB, mostrando uma redução de 3,69% no estoque, o que equivale a aproximadamente 78,5 milhões de MgC emitidos na atmosfera durante o período analisado.6 , -37 x 10 6 e -7,2 x 10 6 MgC, respectivamente, enquanto o Mato Grosso do Sul (Brasil) apresentou um aumento de 8 x 10 6 no estoque de carbono. Dos 108 municípios avaliados, 48 apresentaram variação positiva no estoque de carbono aéreo. O mapeamento das variações de carbono na UPRB permitiu localizar onde devem ser implementadas ou intensificadas atitudes de redução de emissões por desmatamento e mudanças na cobertura da terra. Assim, a aplicação da metodologia proposta pode servir como um dos parâmetros para determinar as variações no estoque de carbono aéreo na região de pesquisa.

 

Changes in vegetation cover and carbon stock in central South America: an analysis using field data and remote sensing

 

Abstract

 

 

 

The central region of South America, where the Upper Paraguay River Basin (UPRB) is located, is considered to be one of the largest above ground carbon reservoirs on the planet. However, the surface occupied by these formations has been decreasing considerably which requires strategic actions to preserve these resources. In this context, the present study aimed to estimate the carbon stock in forest and savanna formations of UPRB, analyzing the variations that occurred in the years 2013 and 2018, using field data, remote sensing and geoprocessing. The proposed approach for the tri-national area of the basin is unprecedented and made it possible to quantify carbon in the UPRB vegetation, showing a reduction of 3.69% in the stock, which is equivalent to approximately 78.5 million MgC emitted into the atmosphere during the analyzed period. The portion of the watershed inside Bolivia, Paraguay and Mato Grosso (Brazil) showed negative variations of -42.3x106, -37x106 and
-7.2x106 MgC, respectively, while Mato Grosso do Sul (Brazil) showed an increase of 8x106 in the carbon stock. The aboveground carbon stock varied positively in 48 out of the 108 municipalities examined. The mapping of carbon variations in the UPRB allowed us to locate where attitudes towards reducing emissions from deforestation and changes in land cover should be implemented or intensified. Thus, the application of the proposed methodology can serve as one of the parameters for determining the variations in aboveground carbon stock in the research region.

 

Keywords: Cerrado; Chaco; carbon emissions; dry forests; Pantanal; remote sensing.


References

Alho, C., Sabino, J., 2011. A conservation agenda for the Pantanal’s biodiversity. Brazilian Journal of Biology 71, 327–335. https://doi.org/10.1590/S1519-69842011000200012

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507

ANA – National Water Agency, 2017. Plano de Recursos Hídricos da Região Hidrográfica do Rio Paraguai – diagnóstico consolidado (Water Resources Plan for the Paraguay River Hydrographic Region – consolidated diagnosis). Brasília.

Andersen, L.E., Doyle, A.S., del Granado, S., Ledezma, J.C., Medinaceli, A., Valdivia, M., Weinhold, D., 2016. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a carbon bookkeeping model. PLoS ONE 11, 1–18. https://doi.org/10.1371/journal.pone.0151241

Assine, M.L., 2005. River avulsions on the Taquari megafan, Pantanal wetland, Brazil. Geomorphology 70, 357–371. https://doi.org/10.1016/j.geomorph.2005.02.013

Baumann, M., Gasparri, I., Piquer‐Rodríguez, M., Gavier Pizarro, G., Griffiths, P., Hostert, P., Kuemmerle, T., 2016. Carbon emissions from agricultural expansion and intensification in the Chaco. Global Change Biology 23, 1902–1916. https://doi.org/10.1111/gcb.13521

Baumann, M., Israel, C., Piquer-Rodríguez, M., Gavier-Pizarro, G., Volante, J.N., Kuemmerle, T., 2017. Deforestation and cattle expansion in the Paraguayan Chaco 1987–2012. Regional Environmental Change 17, 1179–1191. https://doi.org/10.1007/s10113-017-1109-5

Bergier, I., 2013. Effects of highland land-use over lowlands of the Brazilian Pantanal. Science of The Total Environment 463, 1060–1066. https://doi.org/10.1016/j.scitotenv.2013.06.036

Bolivia – Serviço Nacional de Áreas Protegidas, 2013. Deforestación y regeneración de bosques en Bolivia y em sus áreas protegidas nacionales para los periodos 1990-2000 y 2000-2010 (Deforestation and regeneration of forests in Bolivia and in its national protected areas for the periods 1990-2000 and 2000-2010). La Paz, 36 pp. https://bit.ly/2IEJ0Q6

Bonini, I., Marimon-Junior, B.H., Matricardi, E., Phillips, O., Petter, F., Oliveira, B., Marimon, B. S., 2018. Collapse of ecosystem carbon stocks due to forest conversion to soybean plantations at the Amazon-Cerrado transition. Forest Ecology and Management 414, 64–73. http://doi.org/10.1016/j.foreco.2018.01.038

Brasil, 2000. Brazilian Law No. 9,985. Regulamenta o art. 225, § 1o, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências (Regulates the article 225, § 1, items I, II, III and VII of the Federal Constitution, institutes the National System of Nature Conservation Units and makes other provisions).

Brasil, 2012. Brazilian Law No. 12,651. Dispõe sobre a proteção da vegetação nativa; [...]; e dá outras providências (Provides for the protection of native vegetation; [...]; and takes other measures).

Brown, S., 1997. Estimating biomass and biomass change of tropical forests: a primer. Rome: FAO – Food and Agriculture Organization of the United Nations. http://www.fao.org/3/w4095e/w4095e00.htm

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Ecosystem Ecology 145, 87–99. https://doi.org/10.1007/s00442-005-0100-x

Chave, J., Muller-Landau, H.C., Baker, T.R., Easdale, T.A., Steege, H.T., Webb, C.O., 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16(6), 2356–2367. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2

Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46. https://doi.org/10.1177/001316446002000104 Congalton, R.G., 2001. Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire 10(4), 321–328. https://doi.org/10.1071/WF01031

Congalton, R.G., Green, K., 2008. Assessing the accuracy of remotely sensed data. Principles and practices. 2nd ed., Boca Raton. New York.

CPRM – Geological Survey of Brazil: Pluviometric Atlas of Brazil, 2018. Mapa de Isoietas de precipitações Médias Anuais do Brasil de 1977 a 2006 (Map of Isohyets of Mean Annual Precipitation in Brazil from 1977 to 2006). Retrieved January 4, 2020, from https://bit.ly/2Ot5JOO.

De Sy, V., Herold, M., Achard, F., Beuchle, R., Clevers, J.G.P.W., Lindquist, E., Verchot, L., 2015. Land use patterns and related carbon losses following deforestation in South America. Environmental Research Letters I 10(12), 124004.

https://doi.org/10.1088/1748-9326/10/12/124004

Devisscher, T., Malhi, Y., Landívar, V.D.R., Oliveras, I., 2016. Understanding ecological transitions under recurrent wildfire: A case study in the seasonally dry tropical forests of the Chiquitania, Bolivia. Forest Ecology and Management 360, 273–286.

https://doi.org/10.1016/j.foreco.2015.10.033

DGEEC – General Directorate of Statistics, Surveys and Censuses, 2018. Estadísticas Vitales del Paraguay (Vital Statistics of Paraguay). Retrieved September 2, 2019, from https://bit.ly/2ksXM0y

Elgert, L., 2016. ‘More soy on fewer farms’ in Paraguay: challenging neoliberal agriculture's claims to sustainability. The Journal of Peasant Studies 43(2), 537–561. https://doi.org/10.1080/03066150.2015.1076395

Espíndola, I.B., Ribeiro, W.C., 2020. Transboundary waters, conflicts and international cooperation-examples of the La Plata basin. Water International 45(4), 329–346. https://doi.org/10.1080/02508060.2020.1734756

ESRI – Environmental Systems Research Institute, 2018. ArcGIS Desktop: release 10.6.1. Geostatistical Analyst.

FAO – Food and Agriculture Organization of the United Nations, 2016. State of the World’s Forests. Forests and agriculture: land-use challenges and opportunities. Rome.

FAO – Food and Agriculture Organization of the United Nations, 2018. The State of the World’s Forests. Forest pathways to sustainable development. Rome.

Fearnside, P.M., 2008. Quantification of the environmental service of the carbon in Brazil's Amazon forests. Oecologia Brasiliensis 12(4), 743–756. https://dialnet.unirioja.es/servlet/articulo?codigo=2883419

Fehlenberg, V., Baumann, M., Gasparri, N.I., Piquer-Rodriguez, M., Gavier-Pizarro, G., Kuemmerle, T., 2017. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Global Environmental Change 45, 24–34. https://doi.org/10.1016/j.gloenvcha.2017.05.001

Galdino, S., Vieira, L.M., Pellegrin, L.A., 2006. Impactos ambientais e socioeconômicos na bacia do Rio Taquari - Pantanal (Environmental and socioeconomic impacts in the Taquari - Pantanal River basin). Corumbá: Embrapa Pantanal (356p). Retrieved September 3, 2019, from https://bit.ly/32ehyhu

GeoBolivia, 2019a. Mapa de deforestación del 2011 al 2015 en Bolivia (Deforestation map from 2011 to 2015 in Bolivia). Infraestructura de datos Espaciales del Estado Plurinacional de Bolivia. Retrieved November 15, 2019, from https://bit.ly/2ORZkmy

GeoBolivia, 2019b. Identificación de Áreas Deforestadas Período Seco 2015-2016 (Identification of Deforested Areas Dry Period 2015-2016). Infraestructura de datos Espaciales del Estado Plurinacional de Bolivia. Retrieved November 15, 2019, from https://bit.ly/2L0B4qn

Guillaume, T., Damris, M., Kuzyakov, Y., 2015. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Global Change Biology 21(9), 3548–3560 http://doi.org/10.1111/gcb.12907

Hexagon Geospatial, 2013. Erdas Imagine 2013. Intergraph Corporation, Madison, AL, USA

Houghton, R.A., House, J.I., Pongratz, J., Van Der Werf, G.R., DeFries, R.S., Hansen, M.C., Le Quéré, C., Ramankutty, N., 2012. Carbon emissions from land use and land-cover change. Biogeosciences 9(12), 5125–5142 https://doi.org/10.5194/bg-9-5125-2012

IBGE – Brazilian Institute of Geography and Statistics, 2012. Manual Técnico da Vegetação Brasileira (Brazilian Vegetation Technical Manual). Rio de Janeiro. Retrieved July 2, 2019, from https://bit.ly/2Cz2phD

IBGE – Brazilian Institute of Geography and Statistics, 2018. Projeção da população brasileira (Brazilian Population Projection). Retrieved September 2, 2019, from https://bit.ly/2whywwe

INE – National Institute of Statistics, 2017. Estado

lurinacional de Bolivia (Plurinational State of Bolivia). La Paz. Retrieved September 2, 2019, from https://www.ine.gob.bo/index.php/demografia/introduccion-2

Ladeira Neto, J.F., 2010. Mapa de declividade em percentual do relevo brasileiro (Declivity map in percentage of Brazilian relief). CPRM – Geological Service of Brazil. Retrieved February 2, 2020, from https://bit.ly/2DP4xCx

Loveland, T.R., Irons, J.R., 2016. Landsat 8: The plans, the reality, and the legacy. Remote Sensing of Environment 185, 1–6. https://doi.org/10.1016/j.rse.2016.07.033

MADS – Ministry of the Environment and Sustainable xddDevelopment, 2014. Mapa ecorregiones de Paraguay en la Cuenca del Plata (Map ecoregions of Paraguay in the River Plate Basin). Retrieved December 15, 2019, from https://bit.ly/38nOqpX

MapBiomas, 2018. Mapa de uso e cobertura do solo da Bacia Hidrográfica do Rio Paraguai no Brasil (Land use and land cover map of the Paraguay River Basin in Brazil). Retrieved September 2, 2019, from http://plataforma.mapbiomas.org/map#coverage

Mato Grosso do Sul, 2015. State Decree No. 273. Dispõe sobre a Área de Uso Restrito da planície inundável do Pantanal, no Estado de Mato Grosso do Sul, e dá outras providências (Provides for the Restricted Use Area of the Pantanal floodplain, in the State of Mato Grosso do Sul, and other provisions).

MMA – Brazilian Ministry of the Environment, 2007. Biodiversidade do Cerrado e Pantanal: áreas e ações prioritárias para conservação. Brasília: MMA, 2007. 540 p.

MMA – Brazilian Ministry of the Environment, 2019. Mapas de cobertura vegetal dos biomas brasileiros (Vegetation cover maps of Brazilian biomes). Retrieved December 15, 2019, from http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm

MPD – Ministry of Planning for Development, 2006. Mapa de ecoregiones de Bolivia (Map of ecoregions of Bolivia). Retrieved December 15, 2019, from https://bit.ly/36ajN5S

Müller R., Müller D., Schierhorn F., Gerold G., Pacheco P., 2012. Proximate causes of deforestation in the Bolivian lowlands – an analysis of spatial dynamics. Regional Environmental Change 12, 445–459.

https://doi.org/10.1007/s10113-011-0259-0

Müller, R., Pacheco, P., Montero, J.C., 2014. El contexto de la deforestación y degradación de los bosques en Bolivia: causas, actores e instituciones. Vol. 100. Ed. Cifor. Retrieved September 3, 2019, from https://bit.ly/38QpsQJ

Noojipady, P., Morton, C.D., Macedo, N.M., Victoria, C.D., Huang, C., Gibbs, K.H., Bolfe, L.E., 2017. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environmental Research Letters 12(2), 025004. https://doi.org/10.1088/1748-9326/aa5986

Paraguay, 2015. Nivel de Referencia de las Emisiones Forestales por Deforestación en la República del Paraguay para pago por resultados de REDD+ bajo la CMNUCC (Reference Level of Forest Emissions from Deforestation in the Republic of Paraguay for payment for REDD+ results under the CMNUCC). Secretaría del Ambiente, Instituto Forestal Nacional y la Federación por la Autodeterminación de los Pueblos Indígenas. Assunción.

Paraguay, 2019. Estrategia Nacional de Bosques para el Crecimiento Sostenible (National Forest Strategy for Sustainable Growth). Ministerio del Ambiente y Desarrollo Sostenible. Assunción.

Paul, K.I., Radtke, P.J., Roxburgh, S.H., Larmour, J., Waterworth, R., Butler, D., Brooksbank, K., Ximenes, F., 2018. Validation of allometric biomass models: How to have confidence in the application of existing models. Forest Ecology and Management 412, 70–79. https://doi.org/10.1016/j.foreco.2018.01.016

Rappaport, D.I., Morton, D.C., Longo, M., Keller, M., Dubayah, R., Santos, M.N., 2018. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters 13(6), 065013.

https://doi.org/10.1088/1748-9326/aac331

Ribeiro, J.F., Walter, B.M.T., 1998. Fitofisionomias do bioma Cerrado, in: Sano, S.M., Almeida, S.P. (Eds.), Cerrado: ambiente e flora. Planaltina: EMBRAPA-CPAC, pp. 89-166. Retrieved September 13, 2019, from https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/554094/1/fitofisionomiasdoBiomaCerrado2.pdf

Santos, H.G., Carvalho Junior, W.D., Dart, R.D.O., Aglio, M.L.D., Sousa, J.S., Pares, J.G., Fontana, A., Martins, A.L.S., Oliveira, A.P., 2011. O novo mapa de solos do Brasil: legenda atualizada (The new soil map of Brazil: updated legend). Embrapa Solos. Retrieved October 13, 2019, from https://bit.ly/2STtVfk

Silva, J.S.V., Abdon, M.M., Boock, A., Silva, M.P., 1998. Dominant phytophysiognomies in part of Nabileque and Miranda sub-regions, south of the Pantanal wetland. Pesq. Agropec. Bras. 33, 1713–1719. Retrieved October 24, 2019, from http://mtc-m12.sid.inpe.br/col/sid.inpe.br/iris@1912/2005/07.19.20.30.23/doc/5049-55974-1-PB.pdf

Silva, M.P.D., Mauro, R., Mourão, G., Coutinho, M., 2000. Distribution and quantification of vegetation classes by aerial survey in the Brazilian Pantanal. Brazilian Journal of Botany 23(2), 143–152.

https://doi.org/10.1590/S0100-84042000000200004

Stefano, D.L., Petersen-Perlman, J.D., Sproles, E.A., Eynard, J., Wolf, A.T., 2017. Assessment of transboundary river basins for potential hydro-political tensions. Global Environmental Change 45, 35–46. https://doi.org/10.1016/j.gloenvcha.2017.04.008

Tejada, G., dalla-Nora, E., Cordoba, D., Lafortezza, R., Ovando, A., Assis, T., Aguiar, A.P., 2016. Deforestation scenarios for the Bolivian lowlands. Environmental Research 144(B), 49–63.

https://doi.org/10.1016/j.envres.2015.10.010

Temesgen, H., Affleck, D., Poudel, K., Gray, A., Sessions, J., 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research 30(4), 326–335. https://doi.org/10.1080/02827581.2015.1012114

Timothy, D., Onisimo, M., Cletah, S., Adelabu, S., Tsitsi, B., 2016. Remote sensing of aboveground forest biomass: A review. Tropical Ecology 57(2), 125-132. https://bit.ly/2T81hqr

UNESCO, 2000. United Nations Educational, Scientific and Cultural Organization. Pantanal Conservation Area. Retrieved July 4, 2019, from https://bit.ly/2SgBIBr

USGS – United States Geological Survey, 2019. United States Department of the Interior. Washington, DC. Retrieved October 24, 2019, from https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt cience_products=0#qt-news_science_products

WorldClim – Global Climate Data, 2019. Free climate data for ecological modeling and GIS. Retrieved November 10, 2019, from http://worldclim.org/

WWF-Brasil, 2015. Instituto SOS Pantanal, Monitoramento das alterações da cobertura vegetal e uso do Solo na Bacia do Alto Paraguai – Porção Brasileira – Período de Análise: 2012 a 2014 (Monitoring of changes in vegetation cover and land use in the Upper Paraguay Basin - Brazilian Portion - Analysis Period: 2012 to 2014). Brasília. Retrieved October 9, 2019, from https://bit.ly/3bZavxS

WWF-Brasil, 2017. Universidade Católica Dom Bosco, Fundação Tuiuiú, Relatório técnico do monitoramento da cobertura vegetal e uso do solo da Bacia do Alto Paraguai, período 2016 (Technical report on the monitoring of vegetation cover and land use in the Upper Paraguay Basin, period 2016). Brasília. Retrieved October 10, 2019, from https://bit.ly/2HIOqWj

WWF-Brasil, 2018. Análise de Risco Ecológico da Bacia do Rio Paraguai (Ecological Risk Analysis of the Paraguay River Basin). Brasília. Retrieved October 9, 2019, from https://bit.ly/2T5IDPL

ZEE-MS – Ecological-Economic Zoning of the State of Mato Grosso do Sul, 2014. Elementos para construção da sustentabilidade do território sul-mato-grossense (Elements for building the sustainability of the territory of Mato Grosso do Sul). Campo Grande. Retrieved October 4, 2019, from https://bit.ly/38RkLq2

Downloads

Published

2022-12-14

How to Cite

Barros, J. H. de S., Ayres, F. M., Moraes, P. M., Fava, W. S., Skowronski, L., Constantino, M., & Costa, R. B. (2022). Changes in vegetation cover and carbon stock in central South America: an analysis using field data and remote sensing. Journal of Hyperspectral Remote Sensing, 12(4), 138–153. https://doi.org/10.29150/jhrs.v12.4.p138-153

Issue

Section

Hyperspectral remote sensing and Atmosphere

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.