A scoping review
the role of machine learning in social media marketing today
DOI:
https://doi.org/10.51359/2594-8040.2024.262880Palabras clave:
Scoping review, Machine learning, Social media marketing, Data analysis, Marketing strategyResumen
This research conducts a scoping review on the application of machine learning (ML) in social media marketing, an increasingly pivotal area in digital marketing strategies. Machine learning plays a crucial role in analyzing user data, identifying consumer behavior, personalizing content, and optimizing marketing campaigns. Through a systematic search of academic journals, conference proceedings, and other relevant sources, this review identifies and synthesizes studies that explore the use of ML in social media marketing. The selected studies are analyzed to provide a comprehensive overview of ML's impact and applications within this domain. Key findings highlight the significant role of ML in enhancing personalization, improving user engagement, and driving more effective marketing strategies. However, challenges such as data privacy concerns, algorithmic biases, and the need for greater transparency are also noted. The practical implications for marketers include the importance of ethical practices in data handling, algorithm development, and consumer trust-building. Additionally, this review identifies gaps in the current literature and suggests directions for future research, offering valuable insights for both researchers and practitioners aiming to leverage machine learning in social media marketing.
Citas
Abernethy, J., Evgeniou, T., Toubia, O., & Vert, J. P. (2008). Eliciting consumer preferences using robust adaptive choice questionnaires. IEEE Transactions on Knowledge and Data Engineering, 20(2), 145–155.
Agarwal, A., Gans, J., & Goldfarb, A. (2018). Prediction machines. Harvard Business Review Press
Ahani, A., Nilashi, M., Ibrahim, O., Sanzogni, L., & Weaven, S. (2019a). Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews. International Journal of Hospitality Management, 80, 52–77.
Ahani, A., Nilashi, M., Yadegaridehkordi, E., Sanzogni, L., Tarik, A. R., Knox, K., … Ibrahim, O. (2019b). Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels. Journal of Retailing and Consumer Services, 51, 331–343.
Alabdulrahman, R., & Viktor, H. (2021). Catering for unique tastes: Targeting grey-sheep users recommender systems through one-class machine learning. Expert Systems with Applications, 166, 1–12.
Alalwan, A. A. (2018). Investigating the impact of social media advertising features on customer purchase intention. International Journal of Information Management, 42, 65-77.
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., dan Algharabat, R. (2018). Examining factors influencing Jordanian customers’ intentions and adoption of internet banking: Extending UTAUT2 with risk. Journal of Retailing and Consumer Services, 40(January), 125–138.
Alhadid, A. Y. (2014). The Impact of Social media Marketing on Brand Equity: An Empirical Study on Mobile Service Providers in Jordan. Review of Integrative Business and Economics Research, 3, 315-326.
Alvarez-Pato, V. M., S´anchez, C. N., Domínguez-Soberanes, J., M´endoza-P´erez, D. E., & Vel´azquez, R. (2020). A multisensor data fusion approach for predicting consumer acceptance of food products. Foods, 9(6), 774.
Ameer, I., Sidorov, G., & Nawab, R. M. A. (2019). Author profiling for age and gender using combinations of features of various types. Journal of Intelligent & Fuzzy Systems, 36(5), pp. 4833–4843.
Arasu, B. S., Seelan, B. J. B., & Thamaraiselvan, N. (2020). A machine learning-based approach to enhancing social media marketing. Computers & Electrical Engineering, 86, 1–9.
Bai, X., Abasi, R., Edizel, B., & Mantrach, A. (2019). Position-aware deep character-level CTR prediction for sponsored search. IEEE Transactions on Knowledge and Data Engineering, 1–14.
Ballestar, M. T., Grau-Carles, P., & Sainz, J. (2019). Predicting customer quality in ecommerce social networks: A machine learning approach. Review of Managerial Science, 13(3), 589–603.
Bassamzadeh, N., & Ghanem, R. (2017). Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks. Applied Energy, 193, 369–380.
Behe, B. K., Huddleston, P. T., Childs, K. L., Chen, J., & Muraro, I. S. (2020). Seeing through the forest: The gaze path to purchase. PloS One, 15(10), e0240179.
Bhatti, A. (2018). Sales promotion and price discount effect on consumer purchase intention with the moderating role of social media in Pakistan. International Journal of Business Management, 3(4), 50-58.
Bhowmick, A. K., & Mitra, B. (2019). Listen to me, my neighbors or my friend? Role of complementary modalities for predicting business popularity in location based social networks. Computer Communications, 135, 53–70.
Blanchard, S. J., D. Aloise, and W. S. DeSarbo (2017). Extracting summary piles from sorting task data. Journal of Marketing Research. 54(3), 398–414.
Buckinx, W., Verstraeten, G., & Van den Poel, D. (2007). Predicting customer loyalty using the internal transactional database. Expert Systems with Applications, 32(1), 125–134.
Carpineto, C., & Romano, G. (2020). An experimental study of automatic detection and measurement of counterfeit in brand search results. ACM Transactions on the Web, 14 (2), 1–35.
Casamatta, G., Giannoni, S., Brunstein, D., & Jouve, J. (2022). Host type and pricing on Airbnb: Seasonality and perceived market power. Tourism Management, 88, e104433.
Chatterjee, S., Goyal, D., Prakash, A., & Sharma, J. (2021). Exploring healthcare/healthproduct ecommerce satisfaction: A text mining and machine learning application. Journal of Business Research, 131, 815–825.
Chen, Y. P., Nelson, L. D., & Hsu, M. (2015). From “Where” to “What”: Distributed Representations of Brand Associations in the Human Brain. Journal of Marketing Research, 52(4), 453–466.
Chen, Y., R. Iyengar, and G. Iyengar (2017). “Modeling multimoda lcontinuous heterogeneity in conjoint analysis—A sparse learning approach”. Marketing Science. 36(1): 140–156.
Cheng, L. C., & Huang, C. L. (2020). Exploring contextual factors from consumer reviews affecting movie sales: An opinion mining approach. Electronic Commerce Research, 20 (4), 807–832.
Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product rating for personalized marketing. Decision Support Systems, 35(2), 231–243.
Couwenberg, L. E., Boksem, M. AS., Dietvorst, R. C., Worm, L., Verbeke, W. J., & Smidts, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355–366.
Cui, G., Wong, M. L., & Lui, H. K. (2006). Machine learning for direct marketing response models: Bayesian networks with evolutionary programming. Management Science, 52 (4), 597–612.
Danaher, P. J., Danaher, T. S., Smith, M. S., & Loaiza-Maya, R. (2020). Advertising effectiveness for multiple retailer-brands in a multimedia and multichannel environment. Journal of Marketing Research, 57(3), 445–467.
De Bruyn, A., J. C. Liechty, E. K. R. E. Huizingh, and G. L. Lilien (2008). Offering online recommendations with minimum customer input through conjoint-based decision aids. Marketing Science. 27(3), 443–460.
De Matos, M. G., P. Ferreira, and M. D. Smith (2018). The effect of subscription video-on-demand on piracy: Evidence from a household level randomized experiment. Management Science, 5610–5630.
Dew, R., Ansari, A., & Li, Y. (2020). Modeling dynamic heterogeneity using Gaussian processes. Journal of Marketing Research, 57(1), 55–77.
Droomer, M., & Bekker, J. (2020). Using machine learning to predict the next purchase date for an individual retail customer. South African Journal of Industrial Engineering, 31(3), 69–82.
Dzyabura, D., S. Jagabathula, and E. Muller (2019). Accounting for discrepancies between online and offline product evaluations. Marketing Science. 38(1): 88–106.
Esmaeilpour, M., Naderifar, V., & Shukur, Z. (2012). Cellular learning automata for mining customer behaviour in shopping activity. International Journal of Innovative Computing Information and Control, 8(4), 2491–2511.
Evgeniou, T., Pontil, M., & Toubia, O. (2007). A convex optimization approach to modeling consumer heterogeneity in conjoint estimation. Marketing Science, 26(6), 805–818.
Fang, X., & Hu, P. J. H. (2018). Top persuader prediction for social networks. MIS Quarterly, 42(1), 63–82.
Fiore, M., Gallo, C., Tsoukatos, E., & La Sala, P. (2017). Predicting consumer healthy choices regarding type 1 wheat flour. British Food Journal, 119(11), 2388–2405.
Fotis, J., Buhalis, D., and Rossides, N. (2011). Social media impact on holiday travel planning: the case of the Russian and the FSU markets. Int. J. Online Mark. 1, 1–19. doi: 10.4018/ijom.2011100101
Gabel, S., Guhl, D., & Klapper, D. (2019). P2V-MAP: mapping market structures for large retail assortments. Journal of Marketing Research, 56(4), 557–580.
Ghatasheh, N., Faris, Ghose, A., Ipeirotis, P. G., & Li, B. B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing Science, 31(3), 493–520.
Goodrich, K., Schiller, S.u. Z., & Galletta, D. (2015). Consumer reactions to intrusiveness of online-video advertisements: Do length, informativeness, and humor help (or hinder) marketing outcomes? Journal of Advertising Research, 55(1), 37–50.
Gosal, A. S., Geijzendorffer, I. R., Václavík, T., Poulin, B., dan Ziv, G. (2019). Using social media, machine learning and natural language processing to map multiple recreational beneficiaries. Ecosystem Services, 38, 100958.
Hagen, L., Uetake, K., Yang, N., Bollinger, B., Chaney, A. JB., Dzyabura, D., … Sudhir, K. (2020). How can machine learning aid behavioral marketing research? Marketing Letters, 31(4), 361–370.
Hanna, R., Rohm, A., & Crittenden, V. L. (2011). We’re all connected: The power of the social media ecosystem. Business Horizons, 54(3), 265–273.
Hauser, J. R., Toubia, O., Evgeniou, T., Befurt, R., & Dzyabura, D. (2010). Disjunctions of conjunctions, cognitive simplicity, and consideration sets. Journal of Marketing Research, 47(3), 485–496.
Hazim, M., Anuar, N. B., Ab Razak, M. F., & Abdullah, N. A. (2018). Detecting opinion spams through supervised boosting approach. PloS One, 13(6).
Hawkins, K., dan Vel, P. (2013). Attitudinal loyalty, behavioural loyalty and social media: An introspection. The Marketing Review, 13(2), 125–141.
Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50.
Hou, Z. H., Ma, K., Wang, Y. F., Yu, J., Ji, K., Chen, Z. X., & Abraham, A. (2021). Attention-based learning of self-media data for marketing intention detection. Engineering Applications of Artificial Intelligence, 98, 1–9.
Hsiao, C. H., Chang, J. J., dan Tang, K. Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2), 342–355.
Hsieh, C. C., Karkoub, M., Lai, W. R., & Lin, P. H. (2015). Visual people counting using gender features and LRU updating scheme. Multimedia Tools and Applications, 74(6), 1741–1759.
Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., dan Cai, Z. (2019). Monitoring housing rental prices based on social media: An integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land use policy, 82, 657-673.
Hu, M. (Mandy), C. (Ivy) Dang, and P. K. Chintagunta (2019). Search and learning at a daily deals website. Marketing Science. 38(4), 609–642.
Hu, Y., & Wang, D. (2019). A Study on the Accommodation Choices of Millennials: Implications for the Hospitality Industry. International Journal of Contemporary Hospitality Management, 31(6), 1676-1693.
Huiru, W., Zhijian, Z., Jianying, F., Dong, T., & Weisong, M. (2018). Influencing factors on Chinese wine consumers’ behavior under different purchasing motivations based on a multi-classification method. Italian Journal of Food Science, 30(4), 775–791.
Jagdale, K., R., Shelke, C., J., Arhary, R., Wankhede, D., S., Bhandare, T., V. (2022). Artificial Intelligence and its Subsets: Machine Learning and its Algorithms, Deep Learning, and their Future Trends. Journal of Emerging Technologies And Innovative Research (JETIR), 9(5).
Jeon, Y., Jeon, S. G., & Han, K. S. (2020). Better targeting of consumers: Modeling multifactorial gender and biological sex from Instagram posts. User Modeling and User-Adapted Interaction, 30(5), 833–866.
Jiang, S. M., Cai, S. Q., Olle, G. O., & Qin, Z. Y. (2015). Durable product review mining for customer segmentation. Kybernetes, 44(1), 124–138. Jung, S. H., & Jeong, Y. J. (2020). Twitter data analytical methodology development for prediction of start -up firms’ social media marketing level. Technology in Society, 63, 1–12.
Jung, A. R. (2017). The influence of perceived ad relevance on social media advertising: An empirical examination of a mediating role of privacy concern. Computers in human behavior, 70, 303-309.
Kanei, F., Chiba, D., Hato, K., Yoshioka, K., Matsumoto, T., & Akiyama, M. (2020). Detecting and understanding online advertising fraud in the wild. IEICE Transactions on Information and Systems, E103d(7), 1512–1523.
Khurshid, F., Zhu, Y., Xu, Z., Ahmad, M., & Ahmad, M. (2019). Enactment of ensemble learning for review spam detection on selected features. International Journal of Computational Intelligence Systems, 12(1), 387–394.
Kim, D., Lee, H., & Cho, S. (2008). Response modeling with support vector regression. Expert Systems with Applications, 34(2), 1102–1108.
Kim, Y., Kwon, D. Y., & Jeong, S. R. (2015). Comparing machine learning classifiers for movie WOM opinion mining. KSII Transactions on Internet and Information Systems, 9 (8), 3169–3181.
King, M. A., Abrahams, A. S., & Ragsdale, C. T. (2015). Ensemble learning methods for pay-per-click campaign management. Expert Systems with Applications, 42(10), 4818–4829.
Koehn, D., Lessmann, S., & Schaal, M. (2020). Predicting online shopping behaviour from clickstream data using deep learning. Expert Systems with Applications, 150, 1–16.
Kongar, E., dan Adebayo, O. (2021). Impact of Social media Marketing on Business Performance: A Hybrid Performance Measurement Approach Using Data Analytics and Machine Learning. IEEE Engineering Management Review, 49(1), 133–147. doi:10.1109/emr.2021.3055036
Kumar, A. et al (2017) ‘Combined artificial bee colony algorithm and machine learning techniques for prediction of online consumer repurchase intention’, Neural Computing and Applications. Doi: 10.1007/s00521-017-3047-z
Kwok, L., & Yu, B. (2013). Spreading social media messages on Facebook: An analysis of restaurant business-to-consumer communications. Cornell Hospitality Quarterly, 54 (1), 84–94.
Lee, M. Y., Kim, Y.-K., and Fairhurst, A. (2009) ‘Shopping value in online auctions: their antecedents and outcomes, Journal of Retailing and Consumer Services, 16(1), 75–82.
Lepa, S., Herzog, M., Steffens, J., Schoenrock, A., & Egermann, H. (2020). A computational model for predicting perceived musical expression in branding scenarios. Journal of New Music Research, 49(4), 387–402.
Lessmann, S., Haupt, J., Coussement, K., & De Bock, K. W. (2021). Targeting customers for profit: An ensemble learning framework to support marketing decision-making. Information Sciences, 557, 286–301.
Liang, X., Wang, C., & Zhao, G. (2019). Enhancing content marketing article detection with graph analysis. IEEE Access, 7, 94869–94881.
Liu, J. and O. Toubia (2018). “A semantic approach for estimating consumer content preferences from online search queries”. Marketing Science. 37(6), 930–952.
Liu, L. and D. Dzyabura (2016). Capturing multi-taste preferences: A machine learning approach. SSRN Electronic Journal. doi: 10.2139/ssrn.2729468.
Luaces, O., Diez, J., Joachims, T., & Bahamonde, A. (2015). Mapping preferences into Euclidean space. Expert Systems with Applications, 42(22), 8588–8596.
Luo, X. M., Tong, S. L., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947.
Luo, Y., & Xu, X. W. (2019). Predicting the helpfulness of online restaurant reviews using different machine learning algorithms: A case study of yelp. Sustainability, 11(19), 1–17.
Miklosik, A., Kuchta, M., Evans, N., & Zak, S. (2019). Towards the adoption of machine learning-based analytical tools in digital marketing. IEEE Access, 7, 85705–85718.
Mane, Shraddha, Shah, Gauri. (2019). Facial recognition, expression recognition, and gender identification. Data Management, Analytics and Innovation (pp. 275-290). Springer.
Martínez, A., Schmuck, C., Pereverzyev, S., Pirker, C., & Haltmeier, M. (2020). A machine learning framework for customer purchase prediction in the noncontractual setting. European Journal of Operational Research, 281(3), 588–596.
Masui, K., Okada, G., & Tsumura, N. (2020). Measurement of advertisement effect based on multimodal emotional responses considering personality. ITE Transactions on Media Technology and Applications, 8(1), 49–59.
Matz, S. C., Segalin, C., Stillwell, D., Muller, S. R., & Bos, M. W. (2019). Predicting the personal appeal of marketing images using computational methods. Journal of Consumer Psychology, 29(3), 370–390.
Mayrhofer, M., Matthes, J., Einwiller, S., dan Naderer, B. (2020). User generated content presenting brands on social media increases young adults’ purchase intention. International Journal of Advertising, 39(1), 166-186.
Meatry Kurniasari, Agung Budiatmo. 2018. Pengaruh Social media Marketing, Brand Awareness Terhadap Keputusan Pembelian Dengan Minat Beli Sebagai Variabel Intervening Pada J.Co Donuts dan Coffee Semarang. Jurnal Administrasi Bisnis. 7 (1), 25-31.
Mostafa, M. M. (2009). Shades of green: A psychographic segmentation of the green consumer in Kuwait using self-organizing maps. Expert Systems with Applications, 36 (8), 11030–11038.
Nasir, V. A., Keserel, A. C., Surgit, O. E., dan Nalbant, M. (2021). Segmenting consumers based on social media advertising perceptions: How does purchase intention differ across segments?. Telematics and Informatics, 64, 101687.
Ngai, E. W., & Wu, Y. (2022). Machine learning in marketing: A literature review, conceptual framework, and research agenda. Journal of Business Research, 145, 35-48.
O’Leary, D. E. (1998). “Knowledge acquisition from multiple experts: An empirical study”. Management Science. 44(8), 1049–1058.
Paolanti, M., Pietrini, R., Mancini, A., Frontoni, E., & Zingaretti, P. (2020). Deep understanding of shopper behaviours and interactions using RGB-D vision. Machine Vision and Applications, 31(7–8).
Peker, S., Kocyigit, A., & Eren, P. E. (2017). A hybrid approach for predicting customers’ individual purchase behavior. Kybernetes, 46(10), 1614–1631.
Poecze, F., Ebster, C., & Strauss, C. (2019). Let’s play on Facebook: Using sentiment analysis and social media metrics to measure the success of YouTube gamers’ post types. Personal and Ubiquitous Computing, 1–10.
Puranam, D., V. Narayan, and V. Kadiyali (2017). “The effect of calorie posting regulation on consumer opinion: A flexible latent Dirichlet allocation model with informative priors”. Marketing Science. 36(5), 726–746.
Qazi, M., Tollas, K., Kanchinadam, T., Bockhorst, J., & Fung, G. (2020). Designing and deploying insurance recommender systems using machine learning. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 10(4), 1–33.
Quesenberry, K. A., & Coolsen, M. K. (2019). Drama goes viral: Effects of story development on shares and views of online advertising videos. Journal of Interactive Marketing, 48, 1–16.
Rafiq, M., & Ahmed, P. K. (1995). Using the 7Ps as a generic marketing mix: An exploratory survey of UK and European marketing academics. Marketing Intelligence & Planning., 13(9), 4–15.
Rajamohana, S. P., & Umamaheswari, K. (2018). Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection. Computers & Electrical Engineering, 67, 497–508.
Renigier-Biłozor, M., Janowski, A., Walacik, M., & Chmielewska, A. (2021). Human emotion recognition in the significance assessment of property attributes. Journal of Housing and the Built Environment, 1–34.
Rietveld, R., Dolen, W. V., Mazloom, M., & Worring, M. (2020). What you feel, is what you like influence of message appeals on customer engagement on Instagram. Journal of Interactive Marketing, 49, 20–53.
Ryoo, J. H., Wang, X., & Lu, S. J. (2020). Do spoilers really spoil? Using topic modeling to measure the effect of spoiler reviews on box office revenue. Journal of Marketing, 85 (2), 70–88.
Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S. G. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 101, 203–217.
Saranya, G., Gopinath, N., Geetha, G., Meenakshi, K., dan Nithya, M. (2020, December). Prediction of Customer Purchase Intention Using Linear Support Vector Machine in Digital Marketing. In Journal of Physics: Conference Series, 1712(1), e012024.
Schwartz, E. M., Bradlow, E. T., & Fader, P. S. (2014). Model selection using database characteristics: Developing a classification tree for longitudinal incidence data. Marketing Science, 33(2), 188–205.
Seligman, J. 2018. Artificial Intelligence + Machine Learning In Marketing Management. Southampton University, Hampshire, England.
Shareef, M. A., Mukerji, B., Dwivedi, Y. K., Rana, N. P., dan Islam, R. (2017). Social media marketing: Comparative effect of advertisement sources. Journal of Retailing and Consumer Services. http://dx.doi.org/10.1016/j.jretconser.2017.11.001
Shin, H. J., & Cho, S. (2006). Response modeling with support vector machines. Expert Systems with Applications, 30(4), 746–760.
Simmonds, L., Bellman, S., Kennedy, R., Nenycz-Thiel, M., & Bogomolova, S. (2020). Moderating effects of prior brand usage on visual attention to video advertising and recall: An eye-tracking investigation. Journal of Business Research, 111, 241–248.
Smirnov, D., & Huchzermeier, A. (2020). Analytics for labor planning in systems with load-dependent service times. European Journal of Operational Research, 287(2), 668–681.
Sueyoshi, T., & Tadiparthi, G. R. (2005). A wholesale power trading simulator with learning capabilities. IEEE Transactions on Power Systems, 20(3), 1330–1340.
Sueyoshi, T., & Tadiparthi, G. R. (2008). An agent-based decision support system for wholesale electricity market. Decision Support Systems, 44(2), 425–446.
Taecharungroj, V., & Mathayomchan, B. (2019). Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand. Tourism Management, 75, 550–568.
Tang, Z. J., & Dong, S. P. (2020). A total sales forecasting method for a new short lifecycle product in the pre-market period based on an improved evidence theory: Application to the film industry. International Journal of Production Research, 1–15.
Timoshenko, A., & Hauser, J. R. (2019). Identifying customer needs from user-generated content. Marketing Science, 38(1), 1–20.
Tirunillai, S., & Tellis, G. J. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51(4), 463–479.
Toubia, O. and O. Netzer (2017). “Idea generation, creativity, and prototypicality”. Marketing Science. 36(1): pp. 1–20.
Toubia, O., G. Iyengar, R. Bunnell, and A. Lemaire (2019). “Extracting features of entertainment products: A guided latent dirichlet allocation approach informed by the psychology of media consumption”. Journal of Marketing Research. 56(1), 18–36.
Trappey, C. V., Trappey, A. J. C., & Lin, S. C. C. (2020). Intelligent trademark similarity analysis of image, spelling, and phonetic features using machine learning methodologies. Advanced Engineering Informatics, 45, 1–12.
Tsao, H. Y., Campbell, C. L., Sands, S., Ferraro, C., Mavrommatis, A., & Lu, S. (2019). A machine-learning based approach to measuring constructs through text analysis. European Journal of Marketing, 54(3), 511–524.
Ullal, M. S., Hawaldar, I. T., Soni, R., dan Nadeem, M. (2021). The role of machine learning in digital marketing. Sage Open, 11(4), 21582440-211050394.
Van den Broeck, E., Zarouali,B. & Poels, K. (2019). Chatbot advertising effectiveness: When does the message get through? Computers in Human Behavior, 98, 150-157.
van Wezel, M., & Potharst, R. (2007). Improved customer choice predictions using ensemble methods. European Journal of Operational Research, 181(1), 436–452.
Vazquez, S., Munoz-Garcia, O., Campanella, I., Poch, M., Fisas, B., Bel, N., & Andreu, G. (2014). A classification of user-generated content into consumer decision journey stages. Neural Networks, 58, 68–81.
Vermeer, S. A. M., Araujo, T., Bernritter, S. F., & van Noort, G. (2019). Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media. International Journal of Research in Marketing, 36(3), 492–508.
Wang, Y. F., Ma, K., Garcia-Hernandez, L., Chen, J., Hou, Z. H., Ji, K., … Abraham, A. (2020). A CLSTM-TMN for marketing intention detection. Engineering Applications of Artificial Intelligence, 91, 1–9.
Wei, Y. Z., Moreau, L., & Jennings, N. R. (2005). Learning users’ interests by quality classification in market-based recommender systems. IEEE Transactions on Knowledge and Data Engineering, 17(12), 1678–1688.
Wolkenfelt, M. R. J., & Situmeang, F. B. I. (2020). Effects of app pricing structures on product evaluations. Journal of Research in Interactive Marketing, 14(1), 89–110.
Xia, F., R. Chatterjee, and J. H. May (2019). “Using conditional restricted boltzmann machines to model complex consumer shopping patterns”. Marketing Science. 38(4): 711–727.
Xiao, L. and M. Ding (2014). Just the faces: Exploring the effects of facial features in print advertising. Marketing Science. 33(3): 338–352.
Yang, W., Sun, S., Hao, Y., & Wang, S. (2022). A novel machine learning-based electricity price forecasting model based on optimal model selection strategy. Energy, 238, e121989.
Yolcu, G., Oztel, I., Kazan, S., Oz, C., & Bunyak, F. (2020). Deep learning-based face analysis system for monitoring customer interest. Journal of Ambient Intelligence and Humanized Computing, 11(1), 237–248.
Zhang, D. S., Zhou, L., Kehoe, J. L., & Kilic, I. Y. (2016). What online reviewer behaviors really matter? Effects of verbal and nonverbal behaviors on detection of fake online reviews. Journal of Management Information Systems, 33(2), 456–481.
Zhang, X., Li, S., Burke, R. R., & Leykin, A. (2014). An examination of social influence on shopper behavior using video tracking data. Journal of Marketing, 78(5), 24–41.
Zhu, Z., Wang, J., Wang, X., dan Wan, X. (2016). Exploring factors of user’s peer-influence behavior in social media on purchase intention: Evidence from QQ. Computers in Human Behavior, 63, 980-987.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 I Gusti Ayu Tirtayani, I Made Wardana, Putu Yudi Setiawan, I Gst. Ngr. Jaya Agung Widagda K

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Os autores autorizam a publicação do artigo na revista.
- As opiniões e as ideias expressas nos artigos são de inteira responsabilidade dos autores.
- Os autores garantem que o artigo não é fruto de plágio. Caso contrário, poderá sofrer as sanções cabíveis à situação.
- Os editores têm permissão para efetuar ajustes textuais e de formatação para adequar o artigo às normas de publicação da revista.
- Esta revista, seguindo as recomendações do movimento de Acesso Aberto, proporciona seu conteúdo em Full Open Access. Assim os autores conservam todos seus direitos permitindo que a JPM possa publicar seus artigos e disponibilizar pra toda a comunidade.
- Os conteúdos da JPM estão licenciados sob uma Licença Creative Commons Attribution 4.0 Internacional (CC BY 4.0).
Assim, qualquer usuário tem direito de:
- Compartilhar — copiar, baixar, imprimir ou redistribuir o material em qualquer suporte ou formato
- Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
De acordo com os seguintes termos:
- Atribuição — Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de maneira alguma que sugira ao licenciante a apoiar você ou o seu uso.
- Sem restrições adicionais — Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.
________________________
Copyright Statement
- The authors authorize the publication of the article in the journal.
- The opinions and ideas expressed in articles are the sole responsibility of the authors.
- The authors guarantee that the article is not the result of plagiarism. Failure to do so may result in penalties for the situation.
- Editors are allowed to make textual and formatting adjustments to fit the article into the publication standards of the journal.
- This journal, following the recommendations of the Open Access movement, provides its content in Full Open Access. Thus, authors retain all their rights, allowing JPM to publish their articles and make them available to the entire community.
- JPM's contents are licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Thus, any user has the right to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.