Uma introdução à regressão com dados de painel

Autori

DOI:

https://doi.org/10.51359/1808-8708.2021.246522

Parole chiave:

Painel de dados, TSCS, CPRI no Brasil, Regressão linear, Metodologia política

Abstract

Apesar da crescente oferta de dados em formato de painel, ainda são raros os estudos no Brasil que combinam as dimensões transversal e longitudinal na mesma análise. Para se ter uma ideia, numa amostra de mais de 7 mil artigos publicados entre 2000 e 2018 em periódicos de CPRI,  apenas 45 casos citavam técnicas específicas para lidar com observações de unidades espaciais (países, estados, pessoas) repetidas em intervalos regulares do tempo (anos, meses, dias). Diante dos benefícios inferenciais que este tipo de perspectiva pode proporcionar e da escassez de pesquisas sobre o tema, este artigo apresenta uma introdução à regressão de painel. Metodologicamente, sintetizamos as principais recomendações da literatura e mostramos a implementação no R Statistical com o pacote plm,indo desde a seleção de modelos até o tratamento dos dados e apresentação de resultados. Para aumentar o potencial pedagógico do trabalho, disponibilizamos os dados originais e scripts computacionais. Com este artigo esperamos difundir a utilização de análises longitudinais na pesquisa empírica em CPRI no Brasil.

Riferimenti bibliografici

ACHEN, C. H. (2000), “Why lagged dependent variables can suppress the explanatory power of other independent variables”. In: annual meeting of the political methodology section of the American political science association, UCLA.

BALTAGI, Badi H. (2005), Econometric Analysis of Panel Data. England, John Wiley & Sons Ltd.

BECK, Nathaniel; KATZ, Jonathan N. (1995), “What to do (and not to do) with time-series cross-section data”, American political science review, v. 89, n. 3: 634-647.

BECK, Nathaniel; KATZ, Jonathan N.; TUCKER, Richard. (1998), “Taking time seriously: Time-series-cross-section analysis with a binary dependent variable”, American Journal of Political Science, v. 42, n. 4: 1260-1288.

BECK, Nathaniel. (2001), “TIME-SERIES–CROSS-SECTION DATA: What Have We Learned in the Past Few Years?”, Annual Review of Political Science, v. 4, n. 1: 271–293.

BECK, Nathaniel. (2008), “Time‐Series Cross‐Section Methods”, in J. Box-Steffensmeier; H. Brady; D. Collier (Eds.). The Oxford Handbook of Political Methodology. New York, OUP: 475–493.

BLALOCK, Hubert M. The presidential address: Measurement and conceptualization problems: The major obstacle to integrating theory and research. American sociological review, v. 44, n. 6, p. 881-894, 1979.

DE BOEF, Suzanna; KEELE, Luke. (2008), “Taking time seriously”, American Journal of Political Science, v. 52, n. 1: 184-200.

BELL, Andrew; JONES, Kelvyn. (2015), “Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data”, Political Science Research and Methods, v. 3, n. 1: 133–153.

BELL, Andrew; FAIRBROTHER, Malcolm; JONES, Kelvyn. (2019), “Fixed and random effects models: making an informed choice”, Quality & Quantity, v. 53, n. 2: 1051-1074.

BENOIT, K. et al. (2018), “quanteda: An R package for the quantitative analysis of textual data”, Journal of Open Source Software, v. 3, n. 30: 774.

BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C.; LJUNG, G. M. (2016), Time series analysis: forecasting and control. Hoboken/New Jersey, Wiley.

CLARK, Tom S.; LINZER, Drew A. (2015), “Should I Use Fixed or Random Effects?”, Political Science Research and Methods, v. 3, n. 2: 399–408.

CROISSANT, Yves; MILLO, Giovanni. (2008), “Panel data econometrics in R: The plm package”, Journal of statistical software, v. 27, n. 2: 1-43.

CROISSANT, Yves; MILLO, Giovanni. (2018), Panel Data Econometrics with R, Wiley.

CERQUEIRA, Daniel et al. (2017), Atlas da violência 2017.

DIELEMAN, J. L.; TEMPLIN, T. (2014), “Random-Effects, Fixed-Effects and the within-between Specification for Clustered Data in Observational Health Studies: A Simulation Study”, PLoS ONE, v. 9, n. 10: e110257.

FÁVERO, L. P. L. (2013), “Dados em painel em contabilidade e finanças: teoria e aplicação”, BBR-Brazilian Business Review, v. 10, n. 1: 131-156.

FERNANDES, Ivan Filipe de Almeida Lopes; FERNANDES, Gustavo Andrey de Almeida Lopes. (2017), “A importância do crescimento econômico local na escolha do chefe do Executivo no Brasil”, Revista de Administração Pública, v. 51, n. 4: 653-688.

FINKEL, S. E. (1995), Causal analysis with panel data (No. 105). Sage.

FORTIN-RITTBERGER, J. (2013), “Time-Series Cross-Section”, in H. Best; C. Wolf (Eds.), The SAGE Handbook of Regression Analysis and Causal Inference. London, SAGE Publications: 387–408.

GUJARATI, Damodar N. Basic Econometrics. McGraw-Hill Companies. New York, 2004.

HAUSMAN, Jerry A. (1978), “Specification tests in econometrics”, Econometrica: Journal of the econometric society, v. 46, n. 6: 1251-1271.

HENNINGSEN, Arne; HENNINGSEN, Géraldine. (2019), “Analysis of Panel Data Using R”, in M. Tsionas (Ed.) Panel Data Econometrics: Theory. London, Elsevier: 345-396.

HSIAO, C. (2003), Panel data analysis, Cambridge University Press.

IBGE. (2017), Pesquisa Nacional por Amostra de Domicílios Contínua. Disponível em: https://www.ibge.gov.br/estatisticas/sociais/trabalho/17270-pnad-continua.html?=&t=o-que-e. Acesso em 30-06-2020

KING, Gary. (2001). “Proper Nouns and Methodological Propriety: Pooling Dyads in International Relations Data”, International Organization, v. 55, n. 2: 497-507.

KING, Gary. (1995), “Replication, replication”, PS: Political Science and Politics, v. 28, n. 3: 444-452.

KING, Gary; KEOHANE, Robert O.; VERBA, Sidney. (1994), Designing social inquiry: Scientific inference in qualitative research. Princeton University Press.

KENNEDY, Peter. (2003), A guide to econometrics. MIT Press.

KRUEGER, James S.; LEWIS-BECK, Michael S. (2008), “Is OLS dead?”, The Political Methodologist, v. 15, n. 2: 2-4.

LIJPHART, A. (1971), “Comparative Politics and the Comparative Method”, American Political Science Review, v. 65, n. 3: 682–693.

MARQUES, Luís D. (2000), “Modelos Dinâmicos com Dados em Painel: revisão de literatura”. Working paper. Disponível em http://wps.fep.up.pt/wps/wp100.pdf. Acesso em 23-06-2020.

MENARD, Scott. (2002), Longitudinal research. Thousand Oaks, SAGE Publications.

MEDEIROS, M.; BARNABE, I.; ALBUQUERQUE, R.; LIMA, R. (2016), “What does the field of International Relations look like in South America?”, Revista Brasileira de Política Internacional, v. 59, n. 1: e004

MESQUITA, Rafael; MEDEIROS, Marcelo de Almeida; AMELOTTI, Luiza Vilela. (2019), “Diplomats, Quo Vadis? The determinants of Brazilian diplomatic presence”, Rev. bras. polít. int., v. 62, n. 1: e014.

MEIRELES, Fernando; SILVA, Denisson; BARBOSA, Rogerio. (2019), rscielo: A Scraper for Scientific Journals Hosted on Scielo. R package version 1.0.0. https://CRAN.R-project.org/package=rscielo

MUMMOLO, J.; PETERSON, E. (2018). “Improving the interpretation of fixed effects regression results”, Political Science Research and Methods, v. 6, n. 4: 829-835.

PESARAN, M. H. (2004), “General diagnostic tests for cross section dependence in panels”, CESifo Working Paper Series, 1229.

PEARL, J. (2000), Causality: Models, reasoning, and inference. New York, Cambridge University Press.

RAPHAEL, Steven; WINTER-EBMER, Rudolf. (2001), "Identifying the effect of unemployment on crime." The Journal of Law and Economics, v. 44, n. 1: 259-283.

SKRONDAL, A., RABE-HESKETH, S. (2008), “Multilevel and Related Models for Longitudinal Data”, in Leeuw J.., Meijer E. (Eds.) Handbook of Multilevel Analysis, New York, Springer: 275-300.

STOCK, James H.; WATSON, Mark W. (2004), Econometria. Pearson.

VERBEEK, Marno; NIJMAN, Theo. (1992), "Testing for selectivity bias in panel data models", International Economic Review, v. 33, n. 3: 681-703.

WOOLDRIDGE, J. M. (2002), Econometric Analysis of Cross Section and Panel Data, Cambridge, MIT Press.

WOOLDRIDGE, J. M. (2013), Introductory econometrics: a modern approach. Australia, South-Western Cengage Learning.

WORRALL, John L. (2008), “An introduction to pooling cross-sectional and time series data”, in S. Menard (Ed.) Handbook of longitudinal research: Design, measurement, and analysis, Elsevier: 233-248.

Pubblicato

2021-07-01

Fascicolo

Sezione

Metodologia em Ciência Política