Hydraulic and Leaf Economics of Woody Plants of the Tropical Environment

Maria das Graças Santos das Chagas, Rejane Magalhães de Mendonça Pimentel, Luiz Henrique Gonçalves da Silva

Resumo


Leaf photosynthesis and hydraulic traits are closely related to the maintenance of the plants, especially in tropical environments. There is scarce information about the xylem structure and hydraulic efficiency in tropical species, mainly considering the leaf. Environmental changes influence the species performance, conditioning differences of anatomical traits and functional efficiency of xylem cells related to the water flow inside the plant. The hydraulic conductivity and the theoretical leaf-specific conductivity allow estimating the xylem cells flow and inform about the efficiency of the water transport inside the plant. The relation among leaf biometry and anatomic/hydraulic characteristics of the xylem cells of leaves with different stages of growth, of five woody species from the tropical environment, was evaluated. Differences among leaves of different ages and species indicate to be responsible for the anatomical traits variations. The xylem hydraulic traits indicate a greater or smaller efficiency in leaves water transport and are related to the species. The hydraulic and structural differences indicate an adaptation to higher efficiency in water transport in leaves related to the prevailing environmental conditions during the leaf development.


Texto completo:

PDF (English)

Referências


Aasamaa, K, Sõber, A, Rahi, M. 2001. Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28: 765 774.

Almeida Jr., E.B., Olivo, M.A., Araújo, E.L., Zickel, C.S. 2009. Caracterização da vegetação de restinga da RPPN de Maracaípe, PE, Brasil, com base na fisionomia, flora, nutrientes do solo e lençol freático. Acta Bot Bras 23: 36-48.

Baum, S.F., Tran, P.N., Silk, W.K. 2000. Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytol 146: 119-127.

Becker, P., Tyree, M.T., Tsuda, M. 1999. Hydraulic conductances of angiosperms versus conifers: similar transport efficiency at the whole-plant level. Tree Physiol 19: 445-452.

Bongers, F., Popma, J. 1990. Leaf characteristics of the tropical rain forest flora of Los Tuxtlas, Mexico. Bot Gaz 151: 354-365.

Brodribb, T.J., Holbrook, N.M, Gutierrez, M.V. 2002. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25: 1435-1444.

Calkin, H.W., Gibson, A., Nobel, P.S. 1986. Biophysical model of xylem conductance in tracheids of the fern Pteris vittata. J Exp Bot 37: 1054-1064.

Carlquist, S. 1988. Near-vessel lessness in Ephedra and its significance. American Journal of Botany 79: 660-672.

Chiu, S.T., Ewers, F.W. 1992. Xylem structure and water transport in a twiner, a scrambler and a shrub of Lonicera (Caprifoliaceae). Trees 6: 216-224.

Choat, B., Ball, M.C., Luly, J.G., Holtum, J.A.M. 2005. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19: 305-311.

Cutter, E.G. 1986. Anatomia vegetal. Roca, São Paulo.

Dewitt, T., Sih, A., Wilson, D.S. 1998. Costs and limits of phenotypic plasticity. Trees 13: 77-81.

Ewers, F.W. 1985. Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA 6: 309-371.

Fahn, A. 1990. Plant Anatomy. Pergamon Press, Oxford.

INMET. 2005. Instituto Nacional de Meteorologia. http://www.inmet.gov.br. Accessed: January 10, 2005.

Kolb, K.J., Sperry, J.S. 1999. Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80: 2373-2384.

Krauter, D. 1985. Erfahrungen mit Etzolds FSA Färbung für pflanzenschnitte. Mikrokosmos 74: 231-233.

Langan, S.J., Ewers, F.W., Davis, S.D. 1997. Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs. Plant Cell Environ. 20: 425-437.

Larcher, W. 2004. Ecofisiologia vegetal. RiMa, São Carlos.

Lewis, A.M. 1992. Measuring the hydraulic diameter of a pore or conduit. Am J Bot 79: 1158-1161.

Li, L., McCormack, M.L., Ma, C., Kong, D., Zhang, Q., Chen, X., Zeng, H., Niinemets, Ü., Guo, D., 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol. Lett. 18, 899-906.

Machado, E.C., Oliveira, R.F., Ribeiro, R.V., Medina, C.L., Stuchi, E.S., Marin, F.R., Silva, J.A.B., Silva, S.R. 2006. Fluxo de seiva e fotossíntese em laranjeira ‘Natal’ com clorose variegada dos citros. Pesq agropec bras 41: 911-918.

Martre, P., Durand, J.L., Cochard, H. 2000. Changes in axial hydraulic conductivity along elongating leaf blades in relation to xylem maturation in tall fescue. New Phytol 146: 235-247.

Mauseth, J.D., Plemons-Rodriguez, J. 1988. Evolution of extreme xeromorphic characters in wood: a study of nine evolutionary lines in Cactaceae. Am. J. Bot. 85: 209-218.

Mokany, K., McMurtrie, R.E., Atwell, B.J., Keith, H. 2003. Interaction between sapwood and foliage area in alpine ash (Eucalyptus delegatensis) trees of different heights. Tree Physiol. 23: 949-958.

Myers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-845.

Nardini, A., Tyree, M.T. 2000. Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15: 14-24.

Nardini, A., Tyree, M.T., Salleo, S. 2001. Xylem Cavitation in the Leaf of Prunus laurocerasus and Its Impact on Leaf Hydraulics. Plant Physiol 125: 1700-1709.

Naves-Barbiero, C.C., Franco, A.C., Bucci, S.J., Goldstein, G. 2000. Fluxo de seiva e condutância estomática de duas espécies lenhosas sempre-verdes no campo sujo e cerradão. Braz. J. Plant Physiol. 12: 119-134.

Preston, K.A., Cornwell, W.K., Denoyer, J.L. 2006. Wood density an vessel traits as distinct correlates of ecological strategy in 5 California coast range angiosperms. New Phytology 170: 807-818.

Reis, N.S. 2003. Variações fenotípicas em espécies lenhosas do Cerrado em três áreas no Triângulo Mineiro. Dissertation, Universidade Federal de Uberlândia.

Rôças G, Barros CF, Scarano FR (1997) Leaf anatomy plasticity of Alchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest. Trees 11:469-473.

Rôças G, Scarano FR, Barros CF (2001) Leaf anatomical variation in Alchornea triplinervia (Spreng) Müll. Arg. (Euphorbiaceae) under distinct light and soil water regimes. Bot J Linn Soc 136:231-238.

Rosado, B.H.P., Mattos, E.A. 2007. Variação temporal de características morfológicas de folhas em dez espécies do Parque Nacional da Restinga de Jurubatiba, Macaé, RJ, Brasil. Acta Bot. Bras. 21: 741-752.

Salleo, S., Lo Gullo, M.A., Olivieri, E. 1985. Hydraulic parameters measured in 1-year-old twigs of some Mediterranean species with diffuse-porous wood: change in hydraulic conductivity and their possible functional significance. J. Exp. Bot. 36: 2-11.

Salleo, S., Nardini, A., Pitt, F., Lo Gullo, M.A. 2000. Xylem cavitation and hydraulic control of stomatal conductance in laurel (Laurus nobilis L.). Plant Cell Environ. 23: 71-79.

Sass, J.E. 1958. Botanical microthechnique. The Iowa State University Press, Ames.

Scarano, F.R. 2002. Structure, Function and Floristic Relationships of Plant Communities in Stressful Habitats Marginal to the Brazilian Atlantic Rainforest. Ann Bot 90: 517-524.

Schindelin, J., Arganda-Carreras, I., Frise, E. et al. 2012. "Fiji: an open-source platform for biological-image analysis", Nature methods 9: 676-682.

Schultz, H.R., Matthews, M.A. 1993. Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.): evidence that low light uncouples water transport capacity from leaf area. Planta 190: 393-406.

Sellin, A., Rohejärv, A., Rahi, M. 2008. Distribution of vessel size, vessel density and xylem conducting efficiency within a crown of silver birch (Betula pendula). Trees 22: 205-216.

Sperry, J.S., Nichols, K.L., Sullivan, J.E.M., Eastlack, S.E. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736-1752.

Sperry, J.S., Sullivan, J.E.M. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 100: 605-613.

Tombesi, S., Nardini, A., Farinelli, D., Palliott, A. 2014. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Physiologia Plantarum 152: 453-464.

Tyree, M.T. 1997. The cohesion-tension theory of sap ascent: Current controversies. J. Exp. Bot. 48: 1753-1765.

Tyree, M.T., Ewers, F.W. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345-360.

Tyree, M.T., Zimmermann, M.H. 2002. Xylem structure and the ascent of sap. Springer, Berlin.

Yang, S., Tyree, M.T. 1992. A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ. 15: 633-643.

Zwieniecki, M.A., Melcher, P.J., Boyce, C.K., Sack, L., Holbrook, N.M. 2002. Hydraulic architecture of leaf venation in Laurus nobilis L. Plant Cell Environ. 25: 1445-1450.

Tsukaya, H. 2017. Leaf shape diversity with an emphasis on leaf contour variation developmental background, and adaptation. Semin. Cell Dev. Biol. 79: 48-57.

Oliveira, O.S., Pereira, L.S., Silva, D.C., Souza Júnior, J.O., Laviola, B.G., Gomes, F.P. 2018. Hydraulic conductivity in stem of young plants of Jatropha curcas L. cultivated under irrigated or water deficit conditions. Industrial Crops and Products 116: 15-23.

Aou-Ouad, H.E., Lopes, R., Venturas, M., Martorella, S., Medrano, H., Gulías, J. 2018. Low resistance to cavitation and xylem anatomy partly explain the decrease in the endemic Rhamnus ludovici-salvatoris. Flora 229: 1-8.

Xiong, D., Flexas, J., Yu, T., Peng, S., Huang, J. 2016. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist 213: 572-583.

Battipaglia, G., Savi, T., Ascoli, D., Castagneri, D., Esposito, A., Mayr, S., Nardini, A. 2016. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree Physiology 36: 1019-1031.

Song, J., Yang’’, D., Niu, C-Y., Zhang, W-W., Wang, M., Hao, G-Y. 2018. Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. Forest Ecology and Management 418, 63-72.




DOI: https://doi.org/10.26848/rbgf.v11.3.p826-834

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License