Oscilações decadais da temperatura do ar na América do Sul durante o período de verão austral e suas relações com o Oceano Atlântico Norte

Douglas Lindemann, Rose Freitas, Jackson Rodrigues, Mateus Nunes, Luciana Pinto

Resumo


Observações em superfície da temperatura global sobre os continentes e oceanos indicaram um aumento no último século como resposta a eventos cadas vez mais frequentes e intensos de anomalia da temperatura da superfície do mar. Desta forma, o objetivo deste estudo é apresentar as influências exercidas pela Oscilação Multidecadal do Atlântico (AMO) sobre as temperaturas da América do Sul, durante o período de verão austral, para o período de 1901 a 2012. Foi observado que a temperatura do ar apresentou tendências positivas estatisticamente significativas para a região Sudeste e Sul do Brasil. Padrão semelhante foi observado para os extremos de temperatura para todo o período em análise. Ao dividir em períodos conforme a oscilação da AMO, e removendo a tendência, verifica-se que as anomalias das temperaturas do ar são mais acentuadas durante a AMO-, é esperado um aumento (redução) da temperatura do ar e seus extremos principalmente sobre a Bacia do Rio da Prata e Nordeste do Brasil (Centro-Oeste e Sudeste do Brasil). Estes padrões são esperados pelo fato que durante a AMO+ ocorre um aumento da nebulosidade sobre a região correspondente a formação da ZCAS, além de um deslocamento mais para norte da ZCIT, fazendo com que a temperatura do ar fique com menores valores. Por outro lado, no extremo Sul da AS,  as anomalias negativas da Tar e Tmin durante a AMO+ estão associadas com o transporte de umidade do Oceano Atlântico Sul pelo centro de alta pressão que se forma no litoral da Argentina.


Decadal fluctuations in South American air temperature during the southern summer period and its relationship to the North Atlantic Ocean

A B S T R A C T

Surface observations of global temperature on continents and oceans have indicated an increase in the last century in response to increasingly frequent and intense sea surface temperature anomaly events. Thus, the aim of this study is to present the influences exerted by the Atlantic Multidecadal Oscillation (AMO) on South American temperatures during the austral summer period, from 1901 to 2012. It was observed that the air temperature presented statistically significant positive trends for the Southeast and South of Brazil. Similar pattern was observed for temperature extremes for the entire period under analysis. By dividing into periods as the AMO fluctuates, and removing the trend, it is found that anomalies in air temperatures are more pronounced during AMO-, an increase (decrease) in air temperature and its extremes is expected mainly over the Silver River Basin and Northeast Brazil (Midwest and Southeast Brazil). These patterns are expected due to the fact that during AMO + there is an increase in cloudiness over the region corresponding to the formation of ZCAS, as well as a further northward displacement of the ZCIT, making the air temperature lower. On the other hand, in the extreme south of AS, negative Tar and Tmin anomalies during AMO + are associated with the transport of moisture from the South Atlantic Ocean through the high pressure center that forms off the Argentine coast.

Keywords: AMO, air temperature and teleconnection



Palavras-chave


AMO, temperatura do ar e teleconexões

Texto completo:

PDF

Referências


Barkhordarian, A., von Storch, H., Zorita, E., Loikith, P., Mechoso, C., 2018. Observed warming over northern South America has an anthropogenic origin. Climate Dynamics 51, 1901-1914.

Berlato, M., Althaus, D., 2010. Tendência observada da temperatura mínima e do número de dias de geada do Estado do Rio Grande do Sul. Pesquisa Agropecuária Gaúcha, 16, 7-16.

Bernal, P., Cruz, W., Stríkis, M., Wang, X., Deininger, M., Catunda, A., Ortega-Obregón, C., Cheng, H., Edwards, R., Auler, S., 2016. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuverá Cave, Brazil. Earth and Planetary Science Letters, 450, 186–196.

Bettolli, M., Penalba, O., 2018. Statistical downscaling of daily precipitation and temperatures in southern La Plata Basin. International Journal of Climatology, 38, 3705–3722.

Byrne, M., O’Gorman, P., 2018. Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences of the United States of America 19, 4863-4868.

Coelho, C., Oliveira, C., Ambrizzi, T., Reboita, M., Carpenedo, C., Campos, J., Tomaziello, A., Pampuch, L., Custódio, M., Dutra, L., Rocha, R., Rehbein, A., 2016. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics 46, 3737-3752.

Collins, J., Chaves, R., Marques, V., 2009. Temperature Variability over South America. Journal of Climate 22, 5854-5869.

Cordeiro, A., Berlato, M., Fontana, D., Alves, R., 2016 Tendências climáticas das temperaturas do ar no Rio Grande do Sul, Sul do Brasil. Revista Brasileira de Geografia Física 9, 868-880.

Cruz, F., Burns, S., Karmann, I., Sharp, W., Vuille, M., Cardoso, A., Ferrari, J., Dias, P., Viana, O., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 63-66.

Detzer, J., Loikith, P., Pampuch, L., Mechoso, C., Barkhordarian, A., Lee, H., 2019. Characterizing monthly temperature variability states and associated meteorology across southern South America. International Journal of Climatology 40, 492-508, doi: https://doi.org/10.1002/joc.6224

Feron, S., Cordero, R., Damiani, A., Llanillo, P., Jorquera, J., Sepulveda, E., Asencio, V., Laroze, D., Labbe, F., Carrasco, J., Torres, G. 2019. Observations and Projections of Heat Waves in South America. Nature: Scientific Reports 9, doi:https://doi.org/10.1038/s41598-019-44614-4.

Garreaud, R., Vuille, M., Compagnucci, R., Marengo, J., 2008. Present-day South America climate. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.paleo.2007.10.032.

Geirinhas, J., Trigo, R., Libonati, R., Coelho, C., Palmeira, A., 2017. Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, doi: 10.1002/joc.5294.

Grimm, A., Laureanti, N., Rodakoviski, R., Gama, C., 2016. Interdecadal variability and extreme precipitation events in South America during the monsoon season. Climate Research 68, 277–294.

Hodson, D., Sutton, R., Cassou, C., Keenlyside, N., Okumura, Y., Zhou, T., 2009. Climate impacts of recent multidecadal changes in Atlantic Ocean Sea Surface Temperature: a multimodel comparison. Climate Dynamics 34, 1041-1058.

Huang, B., Thorne, P., Smith, T., Liu, W., Lawrimore, J., Banzon, V., Zhang, H., Peterson, T., Menne, M., 2015. Further Exploring and Quantifying Uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) Version 4 (v4). Journal of Climate 29, 3119-3142.

Jones, C., Carvalho, L., 2018. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Nature, 1, doi: 10.1038/s41612-018-0050-8.

Kayano, M., Andreoli, R., Souza, R., Garcia, S., 2017. Spatiotemporal variability modes of surface air temperature in South America during the 1951–2010 period: ENSO and non-ENSO components. International Journal Of Climatology 37, doi: 10.1002/joc.4972.

Kayano, M., Setzer, A., 2018. Nearly Synchronous Multidecadal Oscillations of Surface Air Temperature in Punta Arenas and the Atlantic Multidecadal Oscillation Index. Journal of Climate 31, 7237-7248.

Knight, J., Folland, C., Scaife, A., 2006. Climate impacts of the Atlantic Multidecadal Oscillation. Geophysical Research Letters 33, L17706.

Knudsen, M., Seidenkrantz, M., Jacobsen, B., Kuijpers, A., 2011. Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years. Nature Communications, 2, doi: 10.1038/ncomms1186.

Li, C., Zhao, T., Ying, K. 2017a. Quantifying the contributions of anthropogenic and natural forcings to climate changes over arid-semiarid areas during 1946–2005. Climatic Change 144, 505–517.

Li, Y., Li, J., Kucharski, F., Feng, J., Zhao, S., Zheng, J., 2017b. Two leading modes of the interannual variability in South American surface air temperature during austral winter. Climate Dynamics 51, 2141-2156.

Llopart, M., Reboita, M., Coppola, E., Giorgi, F., Rocha, R., Souza, D., 2018. Land Use Change over the Amazon Forest and Its Impact on the Local Climate. Water 10, doi: 10.3390/w10020149.

Lovino, M., Müller, O., Berbery, E., Müller, G., 2018. Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. International Journal of Climatology 38, doi: 10.1002/joc.5441.

Lüning, S., Galka, M., Bamonte, F., Rodríguez, F., Vahrenholt, F., 2019. The Medieval Climate Anomaly in South America. Quaternary International 508, 70-87.

Lyu, K., Yu, J., 2017. Climate impacts of the Atlantic Multidecadal Oscillation simulated in the CMIP5 models: A re-evaluation based on a revised index. Geophysical Research Letters 44, doi: 10.1002/2017GL072681.

Meseguer-Ruiz, O., Ponce-Philimon, I., Quispe-Jofré, S., Guijarro, A., Sarricolea, P., 2018. Spatial behaviour of daily observed extreme temperatures in Northern Chile (1966–2015): data quality, warming trends, and its orographic and latitudinal effects. Stochastic Environmental Research and Risk Assessment 32, 3503-3523.

Montini, T., Jones, C., Carvalho, L., 2019. The South American Low‐Level Jet: A New Climatology, Variability, and Changes. Journal of Geophysical Research: Atmospheres 124, 1200-1218.

Montroull, N., Saurral, R., Camilloni, I., 2018. Hydrological impacts in La Plata basin under 1.5, 2 and 3 °C global warming above the pre-industrial level. International Journal of Climatology 38, 3355-3368.

Oliveira, P., Santos e Silva, M., Lima, K., 2017. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology 130, 77-90.

Pascale, S., Carvalho, L., Adams, D., Castro, C., Cavalcanti, I., 2019. Current and Future Variations of the Monsoons of the Americas in a Warming Climate. Current Climate Change Reports 5, 125-144.

Patricola, C., Saravanan, R., Chang, P. 2017. A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones. Geophysical Research Letters 44, 1167-1174.

Ren, L., Arkin, P., Smith, T., Shen, S., 2013. Global precipitation trends in 1900-2005 from a reconstruction and coupled model simulations. Journal of Geophysical Research 118, 1679-1689.

Reguero, B., Losada, I., Méndez, F. 2019. A recent increase in global wave power as a consequence of oceanic warming. Nature Communications 10, doi: https://doi.org/10.1038/s41467-018-08066-0

Rosenblüth, B., Fuenzalida, H., Aceituno, P., 1997. Recent temperature variations in Southern South America. International Journal of Climatology 17, 67-85.

Rosso, F., Boiaski, N., Ferraz, S., Dewes, C., Tatsch, J., 2015. Trends and decadal variability in air temperature over Southern Brazil. American Journal of Environmental Engineering 5, 85-95.

Salviano, M., Groppo, J., Pellegrino, G., 2016. Análise de tendências em dados de precipitação e temperatura no Brasil. Revista Brasileira de Meteorologia 31, 64-73.

Sheffield, J., Goteti, G., Wood, E., 2006. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. Journal of Climate 19, 3088-3111.

Smith, T., Reynolds, R., Peterson, T., Lawrimore, J., 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). Journal of Climate 21, 2283-2296, doi: 10.1175/JCLI2100.1.

Soares, D., Lee, H., Loikith, P., Barkhordarian, A., Mechoso, C., 2016. Can significant trends be detected in surface air temperature and precipitation over South America in recent decades? International Journal Of Climatology 37, 1483-1493.

Sutton, R., Hodson, L., 2005. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115-118.

Thompson, D., Wallace, J., Jones, P., Kennedy, J., 2009. Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights. Journal of Climate 22, 6120-6141.

Timmermann, A., Latif, M., Grötzner, A., 1998. Northern Hemisphere interdecadal variability: A coupled air-sea mode. Journal of Climate 11, 1906-1931.

Trenberth, K., Shea, D., 2006. Atlantic hurricanes and natural variability in 2005. Geophysical Research Letters, 33, L12704, doi: 10.1029/2006GL026894.

Vargas, W., Naumann, G., 2008. Impacts of climatic change and low frequency variability in reference series on daily maximum and minimum temperature in southern South America. Regional Environmental Change 8, 45-57.

Vicent, L., Peterson, T., Barros, V., Marino, M., Rusticucci, M., Carrasco, G., Ramirez, E., Alves, L., Ambrizzi, T., Berlato, M., Grimm, A., Marengo, J., Molion, L., Moncunill, D., Rebello, E., Anunciação, Y., Quintana, J., Santos, J., Baez, J., Coronel, G., Garcia, J., Trebejo, I., Bidegain, M., Haylock, M., Karoly, D., 2005. Observed trends in indices of daily temperature extremes in South America 1960-2000. Journal of Climate 18, 5011-5023.

Wu, Y., Polvani, L., 2017. Recent Trends in Extreme Precipitation and Temperature over Southeastern South America: The Dominant Role of Stratospheric Ozone Depletion in the CESM Large Ensemble. Journal of Climate 30, 6433-6441.

Zhai, P., Zhou, B., Chen, Y. 2018. A Review of Climate Change Attribution Studies. Journal of Meteorological Research 32, 671-692.

Zhai, P., Zhou, B., Chen, Y. 2018. A Review of Climate Change Attribution Studies. Journal of Meteorological Research, 32, 671-692.




DOI: https://doi.org/10.26848/rbgf.v12.6.p2163-2176

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License