Resposta da Temperatura aos Diferentes Usos do Solo a partir de Dados de Superfície e de Sensoriamento Remoto (Land use effects on the surface temperature evaluated by ground level and remote sensing data)

Afonso Assalin Zorgetto, Vandoir Bourscheidt

Resumo


Devido as diferentes características termais dos materiais que compõem a superfície terrestre, as mudanças de uso do solo e a temperatura de superfície estão intrinsicamente relacionados. Um notável exemplo dessa relação são as “ilhas de calor” em grandes centros urbanos, regiões nas quais se observa um gradiente térmico em relação as áreas vizinhas e que são alvo de diversos estudos. Porém, são poucos os trabalhos que procuram avaliar as variações térmicas entre áreas com diferentes tipos de vegetação. Neste sentido, o presente trabalho analisa as variações de temperatura em três áreas com diferente cobertura vegetal utilizando dados coletados em campo e também oriundos do processamento de imagens do satélite Landsat 8. Estas imagens também foram utilizadas no sentido de avaliar as estimativas de temperatura por sensoriamento remoto em relação aos dados observados em superfície. As análises mostraram de modo geral correlação entre áreas com vegetação sadia e menores registros de temperatura, evidenciando o papel termorregulador das espécies vegetais. Com relação as estimativas por satélite, destaca-se que os valores se aproximaram dos obtidos nas coletas em campo quando correções foram aplicadas considerando parâmetros atmosféricos e de emissividade terrestre. As medidas, além de terem possibilitado a comparação entre diferentes formas de aquisição da temperatura, remotamente ou não, também serviram como instrumento para avaliar como a qualidade da vegetação (e o próprio uso do solo) impacta nas variações do campo térmico.

 

 

A B S T R A C T

Due to the different thermal characteristics of the surface constituents, changes in land use and surface temperature are intrinsically associated. Urban heat islands, with a well-defined thermal gradient in relation to neighboring areas, are a good example of this relationship and are discussed several studies. On the other hand, only few studies attempt to evaluate the thermal variations between areas with different vegetation conditions. In this sense, the present work analyzes the temperature variations in three areas with different vegetation cover using data collected in field and estimates obtained from Landsat 8 imagery. These images were also used to evaluate the temperature gathered from remote sensing data against ground-truth data. The analyzes showed a general correlation between areas with healthy vegetation and lower temperature records, demonstrating the thermoregulation role of vegetation. Regarding the satellite estimates, it is worth noting that the values approximated those obtained in field surveys when corrections for atmospheric parameters and terrestrial emissivity were applied. Besides allowing the comparison between different forms of temperature acquisition (remotely or not), the measures also served as an instrument to evaluate how vegetation quality and land use itself impacts the variations of the thermal field.

Keywords: remote sensing, surface temperature, land use.


Palavras-chave


Sensoriamento Remoto; Temperatura de Superfície; Uso do Solo

Texto completo:

PDF

Referências


Ali-Toudert, F., Mayer, H., 2007. Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81, 742-754.

Barsi, J.A., Schott, J.R., Palluconi F.D., Hook, S.J., 2005. Validation of a Web-Based Atmospheric Correction Tool for Single Thermal Band Instruments. The International Society for Optics and Photonics [online] 5882. Disponível: https://doi.org/10.1117/12.619990. Acesso: 5 mai. 2017.

Bayat, B., Van Der Tol, C., Verhoef, W., 2018. Integrating satellite optical and thermal infrared observations for improving daily ecosystem functioning estimations during a drought episode. Remote Sensing of Environment, 209, 375-394.

Cao, R., Shen, M., Zhou, J., Chen, J., 2018. Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agricultural and Forest Meteorology, 249, 176-186.

Coelho, A.L.N., Correa, W. de S.C., 2013. Temperatura de Superfície Celsius do Sensor TIRS/Landsat-8: metodologia e aplicações. Revista Geográfica Acadêmica, 7, 31-45.

Davis, B.A., Brewer, S., 2011. A unified approach to orbital, solar, and lunar forcing based on the Earth’s latitudinal insolation/temperature gradient. Quaternary Science Reviews, 30, 1861-1874.

Defries, R.S., Townshend, J.R.G., 1994. NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing, 15, 3567-3586.

Eltz, F., Rovedder, A.P., 2005. Revegetação e temperatura do solo em áreas degradadas no sudoeste do Rio Grande do Sul. Current Agricultural Science and Technology, 11, 193-200.

Fall, S., Niyogi, D., Gluhovsky, A., Pielke, R.A., Kalnay, E., 2010. Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. International Journal of Climatology, 30, 1980-1993.

Fu, B., Burgher, I., 2015. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. Journal of Arid Environments, 113, 59-68.

Gouinguené, S.P., Turlings, T.C.J., 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiology, 129, 1296-1307.

Isaya Ndossi, M., Avdan, U., 2016. Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: A PYQGIS plugin. Remote Sensing, 8, 413-444.

Janatian, N., Sadeghi, M., Sanaeinejad, S.H., Bakhshian, E., Farid, A., Hasheminia, S.M., Ghazanfari, S., 2017. A statistical framework for estimating air temperature using MODIS land surface temperature data. International Journal of Climatology, 37, 1181-1194.

Klein, A.L., 2002. Eugen Warming e o cerrado brasileiro: um século depois, 1 ed. Editora da UNESP/Imprensa Oficial do Estado, São Paulo.

Knight, E.J., Kvaran, G., 2014. Landsat-8 operational land imager design, characterization and performance. Remote Sensing, 6, 10286-10305.

Lopes, J.C., Capucho, M.T., Martins Filho, S., Repossi, P.A., 2005. Influência de temperatura, substrato e luz na germinação de sementes de bertalha. Revista Brasileira de Sementes, 27, 18-24.

Meneses, P.R., Almeida, T., Santa Rosa, A.N.C., Sano, E.E., Souza, E.B., Baptista, G.M.M., Brites, R.S., 2012. Introdução ao processamento de imagens de sensoriamento remoto, 1 ed. Universidade de Brasília/CNPq, Brasília.

Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., 1995. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33, 481-486.

Oke, T.R., Johnson, G.T., Steyn, D.G., Watson, I.D., 1991. Simulation of surface urban heat islands under ‘ideal’conditions at night Part 2: Diagnosis of causation. Boundary-Layer Meteorology, 56, 339-358.

Pal, S., Ziaul, S., 2017. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20, 125-145.

Prevedello, C.L., 1996. Física do solo com problemas resolvidos, 1 ed. Salesward-Discovery, Curitiba.

Sandholt, I., Rasmussen, K., Andersen, J., 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of environment, 79, 213-224.

Santamouris, M., 2001. Energy and climate in the urban built environment, 1 ed. Routledge, Oxfordshire.

Sheng, L., Tang, X., You, H., Gu, Q., Hu, H., 2017. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecological Indicators, 72, 738-746.

Shiflett, S.A., Liang, L.L., Crum, S.M., Feyisa, G.L., Wang, J., Jenerette, G.D., 2017. Variation in the urban vegetation, surface temperature, air temperature nexus. Science of the Total Environment, 579, 495-505.

Sobrino, J.A., Raissouni, N., 2000. Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21, 353-366.

Vancutsem, C., Ceccato, P., Dinku, T., Connor, S.J., 2010. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sensing of Environment, 114, 449-465.

Wang, S., Ma, Q., Ding, H., Liang, H., 2018. Detection of urban expansion and land surface temperature change using multi-temporal landsat images. Resources, Conservation and Recycling, 128, 526-534.

Yuan, F., Bauer, M.E., 2007. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106, 375-386.

Zhang, W., Xu, Z., Guo, W., 2016. The impacts of land-use and land-cover change on tropospheric temperatures at global and regional scales. Earth Interactions, 20, 1-23.

Zhu, W., Lű, A., Jia, S., 2013. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62-73.




DOI: https://doi.org/10.26848/rbgf.v11.4.p1416-1428

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License