A comparison of stability indices and precipitable water derived from radiosonde data collected at two nearby locations and weather radar data in Brazil

Mauro Angelo Alves, Inácio Malmonge Martin, Fernanda Lyra Alves, Ivan dos Santos Muniz, Cássia Solange Lyra

Resumo


Vertical profiles of environmental and dew point temperature, atmospheric stability indices, and precipitable water (PW) derived from sounding data were analyzed for two radiosonde launch sites located 85 km apart in the State of São Paulo, Brazil. The objective of this study was to determine whether there is a correlation between radiosonde profiles and, particularly, whether the values of commonly used stability indices (K, TT, LI, SWEAT, CIN, and CAPE) and precipitable water (PW) determined for each location were similar. In addition, weather radar data were evaluated to determine the level of correlation between precipitation over the radiosonde launch sites and stability indices. Despite the small distance between the two sites, significant differences were found when these indices and PW were compared. Some of these differences can be explained by the fact that one launch site was located in a large metropolitan area and the other in a smaller city. The comparison of stability indices and PW with precipitation estimates from a weather radar suggested that there is a trend towards a correlation between these parameters. The results suggest that the extrapolation of upper-air sounding data, even at relatively small distance scales, may not always be appropriate.

Palavras-chave


Radiosonde; Atmospheric stability; Stability indices; Weather radar; Precipitation.

Texto completo:

PDF (English)

Referências


Ajilesh, P., Rakesh, V., Sahoo, S. K., Himesh, S. (2020). Observed and model‐simulated thermodynamic processes associated with urban heavy rainfall events over Bangalore, India. Meteorological Applications 27(1), e1854. Disponível: https://doi.org/10.3390/rs11242988. Acesso: 30 mar 2020.

Alves, M. A., Martin, I. M., de Castro Folgueras, L. (2015). Comparison of the spatial distribution of precipitation estimated by an S-band Doppler radar and by a rain gauge network in São Paulo, Brazil. In: 2015 SBMO/IEEE Mtt-S International Microwave and Optoelectronics Conference (IMOC). IEEE pp. 1-4). Disponível: https://doi.org/10.1109/IMOC.2015.7369183. Acesso: 30 mar 2020.

Babić, K., Adler, B., Kalthoff, N., Andersen, H., Dione, C., Lohou, F., Lothon, M., Pedruzo-Bagazgoitia, X. (2019). The observed diurnal cycle of low-level stratus clouds over southern West Africa: a case study. Atmospheric Chemistry and Physics 19(2), 1281-1299. Disponível: https://doi.org/10.5194/acp-2018-776. Acesso: 30 mar 2020.

BADC, British Atmospheric Data Centre. Disponível: https://badc.nerc.ac.uk/data/. Acesso: 30 mar 2020.

Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., Zhao, L. (2016). Urban heat islands in China enhanced by haze pollution. Nature Communications 7(1), 1-7. Disponível: https://doi.org/10.1038/ncomms12509. Acesso: 30 mar 2020.

Chakraborty, R., Saha, U., Singh, A. K., Maitra, A. (2017). Association of atmospheric pollution and instability indices: A detailed investigation over an Indian urban metropolis. Atmospheric Research 196, 83-96. Disponível: https://doi.org/10.1016/j.atmosres.2017.04.033. Acesso: 30 mar 2020.

CETESB, Companhia de Tecnologia de Saneamento Ambiental. (2018). Qualidade do ar no estado de São Paulo 2017. São Paulo: Cetesb. Disponível: https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2019/05/Relat%C3%B3rio-de-Qualidade-do-Ar-2017.pdf. Acesso: 30 mar 2020.

Czernecki, B., Głogowski, A., Nowosad, J. (2020). Climate: An R package to access free in-situ meteorological and hydrological datasets for environmental assessment. Sustainability 12(1), 394. Disponível: https://doi.org/10.3390/su12010394. Acesso: 30 mar 2020.

da Silva, F. P., Rotunno Filho, O. C., Sampaio, R. J., Dragaud, I. C. D. A. V., de Araújo, A. A. M., da Silva, M. G. A. J., Pires, G. D. (2017). Evaluation of atmospheric thermodynamics and dynamics during heavy-rainfall and no-rainfall events in the metropolitan area of Rio de Janeiro, Brazil. Meteorology and Atmospheric Physics 131, 299-311. Disponível: https://doi.org/10.1007/s00703-017-0570-5. Acesso: 30 mar 2020.

Dhiram, K., Wang, Z. (2016). Evaluation on radar reflectivity-rainfall rate (ZR) relationships for Guyana. Atmospheric and Climate Sciences 6(4), 489-499. Disponível: http://dx.doi.org/10.4236/acs.2016.64039. Acesso: 30 mar 2020.

do Carmo, L. F. R., Vasconcellos, F. C., Menezes, W. F., Vasconcellos, E. C. (2019). Análise de Índices de Instabilidade em Casos de Chuva Intensa, Chuva Moderada e Chuva Fraca/sem Chuva nas Regiões Sul e Sudeste do Brasil. Anuário do Instituto de Geociências 42(1), 769-782. Disponível: http://dx.doi.org/10.11137/2019_1_769_782. Acesso: 30 mar 2020.

Dong, W., Lin, Y., Wright, J. S., Xie, Y., Yin, X., Guo, J. (2019). Precipitable water and CAPE dependence of rainfall intensities in China. Climate Dynamics 52(5-6), 3357-3368. Disponível: https://doi.org/10.1007/s00382-018-4327-8. Acesso: 30 mar 2020.

Fan, Y., Li, Y., Bejan, A., Wang, Y., Yang, X. (2017). Horizontal extent of the urban heat dome flow. Scientific Reports 7(1), 1-10. Disponível: https://doi.org/10.1038/s41598-017-09917-4. Acesso: 30 mar 2020.

Ferreira, A. P., Nieto, R., Gimeno, L. (2019). Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive. Earth System Science Data 11(2). Disponível: https://doi.org/10.5194/essd-11-603-2019. Acesso: 30 mar 2020.

García-Franco, J. L., Stremme, W., Bezanilla, A., Ruiz-Angulo, A., Grutter, M. (2018). Variability of the mixed-layer height over Mexico City. Boundary-Layer Meteorology 167(3), 493-507. Disponível: https://doi.org/ 10.1007/s10546-018-0334-x. Acesso: 30 mar 2020.

Guerova, G., Dimitrova, T., Georgiev, S. (2019). Thunderstorm classification functions based on instability indices and GNSS IWV for the Sofia Plain. Remote Sensing 11(24), 2988. Disponível: https://doi.org/10.3390/rs11242988. Acesso: 30 mar 2020.

Ko, H. C., Chun, H. Y., Wilson, R., Geller, M. A. (2019). Characteristics of atmospheric turbulence retrieved from high vertical‐resolution radiosonde data in the United States. Journal of Geophysical Research: Atmospheres 124(14), 7553-7579. Disponível: https://doi.org/10.1029/2019JD030287. Acesso: 30 mar 2020.

Li, Q., Chen, P., Sun, L., Ma, X. (2018). A global weighted mean temperature model based on empirical orthogonal function analysis. Advances in Space Research 61(6), 1398-1411. Disponível: https://doi.org/10.1016/j.asr.2017.12.031. Acesso: 30 mar 2020.

Makama, E. K., San Lim, H., Abdullah, K. (2018). Parameterization of the middle and upper tropospheric water vapor from ATOVS observations over a tropical climate region. Journal of Atmospheric and Solar-Terrestrial Physics 167, 190-199. Disponível: https://doi.org/10.1016/j.jastp.2017.12.005. Acesso: 30 mar 2020.

Moura, A. D., Fortes, L. T. G. (2016). O Instituto Nacional de Meteorologia do Brasil (INMET) e suas contribuições para a agrometeorologia. Agrometeoros 24(1), 15-27. Disponível: http://dx.doi.org/10.31062/agrom.v24i1.2488. Acesso: 30 mar 2020.

NOAA, National Oceanic and Atmospheric Administration, National Weather Service. (2016). Identifying erroneous data in upper-air soundings. Disponível: https://www.weather.gov/upperair/Study2. Acesso: 30 mar 2020.

Nychka, D., Gilleland, E., Zhang, L., Hoar, T., 2014. RadioSonde: Tools for plotting skew-T diagrams and wind profiles. R package version 1.4. Disponível: http://CRAN.R-project.org/package=RadioSonde. Acesso: 30 mar 2020.

Palarz, A., Celiński-Mysław, D. (2017). Factors inhibiting convection under conditions of extreme atmospheric instability. Geographia Polonica 90(1), 39-51. Disponível: https://doi.org/10.7163/GPol.0077. Acesso: 30 mar 2020.

R Core Team., 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Disponível: http://www.R-project.org/. Acesso: 30 mar 2020.

Ramseyer, C. A., Miller, P. W., Mote, T. L. (2019). Future precipitation variability during the early rainfall season in the El Yunque National Forest. Science of the Total Environment 661, 326-336. Disponível: https://doi.org/10.1016/j.scitotenv.2019.01.167. Acesso: 30 mar 2020.

Shastri, N., Pathak, K. K. (2019). New Cloud Detection Index (CDI) for forecasting the extreme rain events. Advances in Remote Sensing 8(1), 30-39. Disponível: https://doi.org/10.4236/ars.2019.81002. Acesso: 30 mar 2020.

Silva, F. B., Longo, K. M., De Andrade, F. M. (2017). Spatial and temporal variability patterns of the urban heat island in São Paulo. Environments 4(2), 27. Disponível: https://doi.org/10.3390/environments4020027. Acesso: 30 mar 2020.

Sun, B., Reale, T., Schroeder, S., Pettey, M., Smith, R. (2019). On the accuracy of Vaisala RS41 versus RS92 upper-air temperature observations. Journal of Atmospheric and Oceanic Technology 36(4), 635-653. Disponível: https://doi.org/10.1175/JTECH-D-18-0081.1. Acesso: 30 mar 2020.

Uma, K. N., Das, S. K. (2019). Do the stability indices indicate the formation of deep convection? Meteorology and Atmospheric Physics 131(1), 1-10. Disponível: https://doi.org/10.1007/s00703-017-0550-9. Acesso: 30 mar 2020.

UW, University of Wyoming, Department of Atmospheric Sciences, Atmospheric Soundings. Disponível: http://weather.uwyo.edu/upperair/sounding.html. Acesso: 30 mar 2020.

Wang, J. A., Hutyra, L. R., Li, D., Friedl, M. A. (2017). Gradients of atmospheric temperature and humidity controlled by local urban land-use intensity in Boston. Journal of Applied Meteorology and Climatology 56(4), 817-831. Disponível: https://doi.org/10.1175/JAMC-D-16-0325.1. Acesso: 30 mar 2020.

Yang, L., Qian, F., Song, D. X., Zheng, K. J. (2016). Research on urban heat-island effect. Procedia Engineering 169, 11-18. Disponível: https://doi.org/10.1016/j.proeng.2016.10.002. Acesso: 30 mar 2020.

Zhang, Y., Xu, J., Yang, N., Lan, P. (2018). Variability and trends in global precipitable water vapor retrieved from COSMIC radio occultation and radiosonde observations. Atmosphere 9(5), 174. Disponível: https://doi:10.3390/atmos9050174. Acesso: 30 mar 2020.




DOI: https://doi.org/10.26848/rbgf.v13.3.p1280-1293

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

      

Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License