Weather Reasearch and Forecasting Model Simulation of a Snowfall Event in Southern Brazil

Ricardo Antonio Mollmann Junior, Rita de Cássia Marquês Alves, Gabriel Bonow Münchow, Osvaldo Luiz Leal de Moraes, Caroline Azzolini Pontel


 This study evaluates the reliability of the Weather Research and Forecasting (WRF) to simulate a snowfall event in the south of Brazil. The event in August 2013 was considered one of the most intense in recent years in the region with the highest topographic elevations between the states of Rio Grande do Sul (RS) and Santa Catarina (SC). The Snowfall in the mountain region of RS and SC was associated with the configuration involving a polar anticyclone and the intensification of an extratropical cyclone over the Atlantic Ocean. The WRF simulation results demonstrated the model's viability to predict the event, but without the magnitude representation of the phenomenon. The WRF simulation underestimated the results for the accumulated and area of the snowfall region, which may be linked to overestimations of surface and vertical air temperature and liquid water precipitation.  These results were attributed to the choice of WRF Single–moment 6–class (WSM6) microphysics and in the Noah Land Surface Model scheme. Despite these limitations, WRF has proved to be an important tool for predicting the spatial and temporal distribution of snowfall and precipitation in the higher regions of southern Brazil.


snowfall; WRF; WRF Single–moment 6–class scheme; Atmospheric modelling


Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22, 711–728.

Bauer, P., Thorpe, A., Brunet, G., 2015. The quiet revolution of numerical weather prediction. Nature 525, 47-55.

CENAD - Centro Nacional de Gerenciamento de Riscos e Desastres. 2014. Anuário brasileiro de desastres naturais: 2013. Available in: . Accessed: 28 Feb. 2019.

CLICRBS. 2019. Neve de 2013: Relembre um dos Fenômenos Mais Intensos em Quase 20 Anos. Available in: . Acessed: 28 Feb 2019.

Collins, W.D., Rasch, P.J., Boville, B. A., Hack, J.J., McCaa, J.R., Williamson, D.L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.-J., Zhang, M., Dai, Y., 2004. Description of the NCAR Community Atmosphere Model (CAM 3.0). In: NCAR TECHNICAL NOTE 464.

Comin, A.N., Schumacher, V., Justino, F., 2018. Impact of different microphysical parameterizations on extreme snowfall events in the Southern Andes. Weather and Climate Extremes 21, 65–75.

Currier, W.R., Thorson, T., Lundquist, J.D., 2017. Independent Evaluation of Frozen Precipitation from WRF and PRISM in the Olympic Mountains. Journal of hydrometeorology 18, 2681–2703.

Fernández-González, S., Valero, F., Sánchez, J.L., Gascón, E., López, L., García-Ortega, E., Merino, A., 2015. Numerical simulations of snowfall events: Sensitivity analysis of physical parameterizations. Journal of Geophysical Research, 120, 10130–10148.

Fuentes, M.V., 2009. Dinâmica e Padrões da Precipitação de Neve no Sul do Brasil., Doctoral Thesis, Rio Grande do Sul Federal University, Porto Alegre, Brazil. 191p.

Gesch, D. B.; Verdin, K. L. & Greeblee, S. K. 1999. New land surface digital elevation model covers the Earth. American Geophysical Union, 80:69–70.

Giorgi, F., 2018. Thirty years of regional climate modeling: Where are we and where are we going next? Journal of Geophysical Research: Atmospheres 124, 5696–5723.

Gordillo, N., Smith, E., Taziny, A., 2019. Using WRF to determine the effects of natural sensitivities on orographic precipitation. SOARS, 1-12.

Heuvel, F.V.D., Gabella, M., Germann, U., Berne, A., 2018. Characterization of the melting layer variability in an Alpine valley based on polarimetric X-band radar scans. Atmospheric Measurement Techniques Discussions 11(9), 1–37.

Hong, S.-Y., Lim, J., 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

Hong, S.-Y., Noh, Y., Dudhia, J., 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134, 2318–2341.

Kar, S. C., Tiwari, S., 2020. Impact of Cloud Microphysical Processes on the Dynamic Downscaling for Western Himalayas Using the WRF Model. In: DIMIRI, A.P., Bookhagen, B., Stoffel, M., Yasunari, T., (Eds.) Himalayan Weather and Climate and their Impact on the Environment. Springer Nature Switzerland AG 2020, pp. 91-107.

Janjic, Z.I., 1994. The Step-Mountain ETA Coordinate model: Further developments of the convection, viscous sub-layer and turbulence closure schemes. Monthly Weather Review 122, 927–945.

Jimenez, P.A., Dudhia, J., Gonzalez-Rouco, J.F., Navarro, J., Montavez, J.P., Garcia-Bustamante, E., 2012. A revised scheme for the WRF surface layer formulation. Monthly Weather Review 140, 898–918.

Jin, J., Miller, N. L., 2007. Analysis of the impact of snow on daily weather variability in mountainous regions using MM5. Journal of Hydrometeorology 8, 245–258.

Jung, S.H., Im, E.S., Han, S.O., 2012. The effect of topography and sea surface temperature on heavy snowfall in the Yeongdong Region: A case study with high-resolution WRF simulation. Asia-Pacific Journal of Atmospheric Sciences 48, 259–273.

Liu, L., Ma, Y., Menenti, M., Zhang, X., Ma, W., 2019. Evaluation of WRF Modeling in Relation to Different Land Surface Schemes and Initial and Boundary Conditions: A Snow Event Simulation over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 124, 209–226.

Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., Yao, T., 2011. WRF simulation of a precipitation event over the Tibetan Plateau, China - An assessment using remote sensing and ground observations. Hydrology and Earth System Sciences, 15, 1795–1817.

Miller, D.K., 2012. Near-term effects of the lower atmosphere in simulated northwest flow snowfall forced over the southern Appalachians. Weather and Forecasting, 27, 1198–1216.

Min, K.H., Choo, S., Lee, D., Lee, G., 2015. Evaluation of WRF cloud microphysics schemes using radar observations. Weather and Forecasting 30, 1571–1589.

Mintegui, J.M., Puhales, F.S., Boiaski, N.T., Nascimento, E.L., Anabor, V., 2018. Some mean atmospheric characteristics for snowfall occurrences in southern Brazil. Meteorology and Atmospheric Physics 131, 389–412.

Molthan, A.L., Colle, B.A., 2002. Comparisons of Single-and Double-Moment Microphysics Schemes in the Simulation of a Synoptic-Scale Snowfall Event. Monthly Weather Review 140, 2982–3002.

Nimer, E., 1979. Climatologia do Brasil. Brazilian Institute of Geography and Statistics, Rio de Janeiro – RJ, Brazil.

Norris, J., Carvalho, L.M.V., Jones, C., Cannon, F., 2015. WRF simulations of two extreme snowfall events associated with contrasting extratropical cyclones over the western and central Himalaya. Journal of Geophysical Research 120, 3114–3138.

Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., Miller, K., 2011. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. Journal of Climate 24, 3015–3048.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., Becker, E., 2011. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available in: . Accessed: 28 Oct 2018.

Saha, S.K., Sujith, K., Pokhrel, S., Chaudhari, H., Hazra, S., 2017. A. Effects of multilayer snow scheme on the simulation of snow: Offline Noah and coupled with NCEP CFSv2. Journal of Advances in Modeling Earth Systems 9, 271–290.

Sari, F.P., Baskoro, A.P., Hakim, O.S., 2018. Effect of different microphysics scheme on WRF model: A simulation of hail event study case in Surabaya, Indonesia. Proceedings of the AIP Conference Proceedings; American Institute of Physics Inc. 1987(1), 0200021-02000211.

Shi, J.J., Tao, W. K., Matsui, T., Cifelli, R., Hou, A., Lang, S., Tokay, A., Wang, N.Y., Peters-Lidard, C., Skofronick-Jackson, G., Rutledge, S., Petersen, W., 2010. WRF simulations of the 20-22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. Journal of Applied Meteorology and Climatology 49, 2246–2266.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W., Powers, J.G., 2008. A Description of the Advanced Research WRF Version 3. In: NCAR TECHNICAL NOTE 475, 113p.

Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M.A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., Cuenca, R.H., 2004. Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, pp. 11–15.

Tiwari, S., Kar, S.C., Bhatla, R. 2018. Dynamic downscaling over western Himalayas: Impact of cloud microphysics schemes. Atmospheric Research 201, 1-16.

Wang, H., Yu, E., Yang, S., 2011. An exceptionally heavy snowfall in Northeast china: Large-scale circulation anomalies and hindcast of the NCAR WRF model. Meteorology and Atmospheric Physics 113, 11–25.

Yamaguchi, Y., Kahle, A., Tsu, H., Kawakami, T., Pniel, M., 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071.

Yáñez-Morroni, G., Gironás, J., Caneo, M., Delgado, R., Garreaud, R., 2018. Using the Weather Research and Forecasting (WRF) Model for Precipitation Forecasting in an Andean Region with Complex Topography. Atmosphere 9, 1–23.

Yu, E.T. 2013. High-resolution seasonal snowfall simulation over Northeast China. Chinese Science Bulletin 58, 1412–1419.


Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.


Revista Brasileira de Geografia Física - ISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License