Testando diferentes esquemas da Parametrização Cumulus do modelo WRF, para a região norte Nordeste do Brasileiro (Testing different WRF Cumulus parameterization schemes for the north-eastern region of Brazil)

Vanessa de Almeida Dantas, Vicente Paulo Silva Filho, Eliane Barbosa Santos, Adilson Wagner Gandu

Resumo


O maior obstáculo para a realização de estudos de clima no Nordeste do Brasil é a falta de séries contínuas de dados, observações de longo prazo, espacialmente bem distribuídas, e de alta qualidade. Fontes alternativas de dados têm sido buscadas. Umas das principais ferramentas para estudos atmosféricos de longo prazo, são os modelos climáticos globais e regionais. A utilização de um modelo regional permite a obtenção de séries quadri-dimensionais contínuas, relativas a qualquer fenômeno atmosférico. Dos modelos regionais disponíveis na literatura, o Weather Research and Forecasting (WRF) vem se destacando como modelo de última geração de previsão numérica de tempo e clima. Este estudo teve como objetivo, avaliar a sensibilidade do modelo WRF a s diferentes opções físicas de parametrização no sobre a região norte do Nordeste Brasileiro (NNEB). O esquema de convecção que melhor representasse as condições meteorológicas e climáticas para o NNEB seria escolhido. A escolha foi feita comparando-se os resultados das simulações dos dados de chuva do produto MERGE/CPTEC. As análises foram realizadas para dois casos de sistemas convectivos de mesoescala (SCM) sobre o NNEB, que ocorreram nos dias 14 de janeiro e 30 de março de 2016. Nos resultados obtidos, foi possível perceber que as simulações apresentaram grandes diferenças de acordo com o esquema de cumulus utilizado. O Diagrama de Taylor foi utilizado como ferramenta estatística para analisar a destreza das simulações do WRF em relação aos dados observados, gerados pelo produto Merge.

 

 

 

A B S T R A C T

The greatest obstacle to conducting climate studies in Northeast Brazil is the lack of continuous data series, long-term, spatially well-distributed, and high-quality observations. Alternative sources of data have been sought. One of the main tools for long-term atmospheric studies is the global and regional climate models. The use of a regional model allows the obtaining of continuous four-dimensional series, related to any atmospheric phenomenon. From the regional models available in the literature, the Weather Research and Forecasting (WRF) have been standing out as a model of last generation of numerical forecast of weather and climate. The objective of this study was to evaluate the sensitivity of the WRF model to the different physical parameterization options on the northern Northeast of Brazil (NNEB). The convection scheme that best represented the weather and climate conditions for the NNEB would be chosen. The choice was made by comparing the results of the simulations with the rain data of the MERGE / CPTEC product. The analyzes were performed for two cases of mesoscale convective systems (SCN) on the NNEB, which occurred on January 14 and March 30, 2016. In the obtained results, it was possible to perceive that the simulations showed great differences according to the cumulus scheme used. The Taylor Diagram was used as a statistical tool to analyze the dexterity of the WRF simulations in relation to the observed data, resulting in the parameterization of Grell (E5) in the event of the day 01/01 and Grelle Freitas (E5) for the day 30 / 03, with BIAS around 1.

Keywords: Regional modeling, Precipitation, Climatology.


Palavras-chave


Modelagem regional, Precipitação, Climatologia

Texto completo:

PDF

Referências


Arakawa, A. 2004. The cumulus parameterization problem: Past, present, and future. Journal of Climate, v. 17, p. 2493–2525.

Anthes, R. A.; Kuo, Y.-A.; Hsie, E.-Y.; Low-Nam, S.; Bettge, T.W. Estimation of Skill and Uncertainty in Regional Numerical Models. Quarterly Journal of the Royal Meteorological Society, v. 115, p. 763-806, 1989.

Betts, A. K. 1986. A new convective adjustment scheme. part i: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society, v. 112, p. 677–691.

Betts, A. K.; Miller, M. J. 1986. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, v. 112, p. 693–709.

Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, v. 46, p. 3077–3107, 1989.

GALLUS, J.; WILLIAM, A. Eta simulations of three extreme precipitation events: Sensitivity to resolution and convective parameterization. Weather and forecasting, v. 14, n. 3, p. 405–426, 1999.

Grell, G. 1993. A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Monthly weather review, v. 121, p. 764–787.

Grell, G. A.; Devenyi, D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophysical Research Letters. v. 29, p. 38-1-38-4,DOI:10.1029/2002GL015311.

Grell, G. A.; Freitas, S. R. 2014. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmospheric Chemistry and Physics, v. 14, p. 5233–5250, 2014. DOI:10.5194/acp-14-5233.

Hong, S. Y.; Dudhia, J.; Chen, S. H. 2004. A revised approach to ice microphysical processes for the bulk parameterizaion of clouds and precipitation. Monthly Weather Review, v. 132, p. 103–120,.

Hong, S. Y.; Noh, Y.; Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, v. 134, p. 2318–2341,. DOI:10.1175/MWR3199.1

Janjic, Z. I., 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer and turbulence closure

schemes. Monthly weather review, v. 122, p. 927-945.

Janjic, Z. I., 2000. Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models." Journal of the Atmospheric Sciences, v. 57.

Jankov, I.; Gallus JR, W. A.; Segal, M.; Shaw, B.; Koch, S. E. 2005. The impact of different wrf model physical parameterizations and their interactions on warm season mcs rainfall. Weather and forecasting, v. 20, n. 6, p. 1048–1060.

Jimenez, P. A.; Dudhia, J.; Gonzalez-Rouco, J. F.; Navarro, J.; Montalvez, J. P.; Garcia-Bustamante, E. A revised scheme for the WRF surface layer formulation. Monthly Weather Review, v. 40, p. 898-918, 2012. Doi:10.1175/MWR-D-11-00056.1.

Kain, J. S. The kain-fritsch convective parameterization: An update. Journal of Applied Meteorology, v. 43, p. 170–181, 2004.

Mesinger, F. Bias adjusted precipitation threat scores. Advances in Geosciences, Copernicus GmbH, v. 16, n. 16, p. 137–142, 2008.

Mlawer, E. J.; Taubman, S. J.; Brown, P. D.; Iacono, M. J.; Clough, S.A. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, p. 16663–16682.

Molinari, J.; Dudek, M. 1992. Parameterization of convective precipitation in mesoscale numerical models: A critical review. Monthly Weather Review, v. 120, n. 2, p. 326–344.

Nebeker, F. Calculating the Weather: Meteorology in the 20th Century. Academic Press, 1995.

Pereira, D.P. Lima, J.S.S. Xavier, A.C. Passos, R.R. Fiedler, N.C. Aplicação do Diagrama de Taylor para Avaliação de Interpoladores Espaciais em Atributos de Solo em Cultivo com Eucalipto. Revista Árvore, Viçosa-MG, v.38, n.5, p.899-905, 2014.

Shrivastava, R.; Dash, S. K.; Oza, R. B.; Sharma, D. N., Evaluation of Parameterization Schemes in the WRF Model for Estimation of Mixing Height. International Journal of Atmospheric Sciences, 2014. DOI: 10.1155/2014/451578

Skamarock, W. C.; Klemp J. B.; Dudhia, J.; Gill, D. O.; Barker, D. M.; Wang, W.; Powers, J. G. 2005. A description of the Advanced Research WRF Version 2. NCAR Technical Note,NCAR/TN-468+STR, 88pp.DOI:10.5065/D6DZ069

Spencer, P. L.; Stensrud, D. J. 1998. Simulating flash flood events: Importance of the subgrid representation of convection. Monthly weather review, v. 126, n. 11, p. 2884–2912.

Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research, v. 106, n. D7, p. 7183-7192.

Tewari. M.; Chen, F.; Wang, W.; Dudhia, J.; Lemone, M. A.; Mitchell, K.; EK, M.; Gayno, G.; Wegiel, J.; Cuenca, R. H. 2004. Implementation and verification of the unified NOAH land surface model in the WRF. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, p. 11-15.

Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterisation in large-scale models. Monthly weather review, v. 117, p. 1779-1800.

Wang, W.; Seaman, N. L. 1997. A comparison study of convective parameterization schemes in a mesoscale model. Monthly Weather Review, v. 125, n. 2, p. 252–278.

Yu, X.; Lee, T.-Y. 2011. Role of convective parameterization in simulations of heavy precipitation systems at grey-zone resolutions—Case studies. Asia-Pacific Journal of the Atmospheric Sciences, v. 49, p. 99–112,. DOI:10.1007/s13143-011-0001-3.

Zhang, C.; Wang, Y.; 2011. Hamilton, K. Improved representation of boundary layer clouds over the Southeast Pacigic in WRF-ARW using a modified Tiedtke cumulus parameterization scheme. Monthly Weather Review, v. 139, p. 3489-3513.




Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição 4.0 Internacional.

 

Revista Brasileira de Geografia Física - eISSN: 1984-2295

Creative Commons License
Esta obra está licenciada com uma Licença Creative Commons Attribution-NonCommercial 4.0 International License